大约2D卷积及其如何产生1通道图像
如果我正确理解:
- 蓝色形状是输入
- ,橙色形状是卷积过滤器之一,
- 绿色形状是输出
我的问题是:从2个张量器中执行的计算是什么具有形状3x3xd(其中d是深度),一个值。
据我了解,卷积的计算将产生1x1xD向量,但是我从该向量中没有得到一个值。只是添加吗?加法是否具有归一化?
先感谢您!
Trying to understand 2D convolutions, I ran into the following image, which has me confused:
If I understood correctly:
- the blue shape is the input
- the orange shape is the one of the convolution filters
- the green shape is the output
My question is: what are the calculations performed to get, from 2 tensors with shape 3x3xD (where D is the depth), a single value.
As far as I understand, the calculation of convolution would produce a 1x1xD vector, but I don't get how from this vector we get a single value. Is it just addition? Does it have normalization for the addition?
Thank you in advance!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论