Python的多边形散射图
我有一个n
观察值的矩阵和f
功能。在n
观察值中,5表示我希望与他人(具有距离或相似性度量)进行比较的参考样本。取决于n
功能与5个参考的距离,我想在多边形图上绘制它们,以更好地感知它们在5个情况之间的分布方式(即它们之间的距离有多遥远)。 这是我想获得的结果的一个示例:
如何在Python中制作此类型的图表?
另外,是否可以通过调节角数(低或高于5)来产生此类图?
I have a matrix of N
observations and F
features. Among the N
observations, 5 represent reference samples that I wish to compare with others (with distance or similarity measures). Depending on how close the N
features are from the 5 references, I would like to plot them on a polygonal diagram to have a better perception of how they are distributed between the 5 cases (i.e. how distant they are).
This is an example of result I would like to get:
Each corner represent a reference while black dots are the samples to locate between such references. How can I produce this type of diagram in python?
Also, would it be possible to produce such diagram by modulating the number of corners (lower or higher than 5)?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论