OpenMP增加线程数量增加了执行时间
我正在实现稀疏矩阵乘法(元素类型std :: complex
)之后,将它们转换为csr
(压缩稀疏行)格式,我正在为此使用OpenMP但是我注意到,增加线程的数量并不一定会提高性能,有时完全恰恰相反!为什么这样?我该怎么办来解决这个问题?
typedef std::vector < std::vector < std::complex < int >>> matrix;
struct CSR {
std::vector<std::complex<int>> values; //non-zero values
std::vector<int> row_ptr; //pointers of rows
std::vector<int> cols_index; //indices of columns
int rows; //number of rows
int cols; //number of columns
int NNZ; //number of non_zero elements
};
const matrix multiply_omp (const CSR& A,
const CSR& B,const unsigned int num_threds=4) {
if (A.cols != B.rows)
throw "Error";
CSR B_t = sparse_transpose(B);
omp_set_num_threads(num_threds);
matrix result(A.rows, std::vector < std::complex < int >>(B.cols, 0));
#pragma omp parallel
{
int i, j, k, l;
#pragma omp for
for (i = 0; i < A.rows; i++) {
for (j = 0; j < B_t.rows; j++) {
std::complex < int > sum(0, 0);
for (k = A.row_ptr[i]; k < A.row_ptr[i + 1]; k++)
for (l = B_t.row_ptr[j]; l < B_t.row_ptr[j + 1]; l++)
if (A.cols_index[k] == B_t.cols_index[l]) {
sum += A.values[k] * B_t.values[l];
break;
}
if (sum != std::complex < int >(0, 0)) {
result[i][j] += sum;
}
}
}
}
return result;
}
I'm implementing sparse matrices multiplication(type of elements std::complex
) after converting them to CSR
(compressed sparse row) format and I'm using openmp for this, but what I noticed that increasing the number of threads doesn't necessarily increase the performance, sometimes is totally the opposite! why is that the case? and what can I do to solve the issue?
typedef std::vector < std::vector < std::complex < int >>> matrix;
struct CSR {
std::vector<std::complex<int>> values; //non-zero values
std::vector<int> row_ptr; //pointers of rows
std::vector<int> cols_index; //indices of columns
int rows; //number of rows
int cols; //number of columns
int NNZ; //number of non_zero elements
};
const matrix multiply_omp (const CSR& A,
const CSR& B,const unsigned int num_threds=4) {
if (A.cols != B.rows)
throw "Error";
CSR B_t = sparse_transpose(B);
omp_set_num_threads(num_threds);
matrix result(A.rows, std::vector < std::complex < int >>(B.cols, 0));
#pragma omp parallel
{
int i, j, k, l;
#pragma omp for
for (i = 0; i < A.rows; i++) {
for (j = 0; j < B_t.rows; j++) {
std::complex < int > sum(0, 0);
for (k = A.row_ptr[i]; k < A.row_ptr[i + 1]; k++)
for (l = B_t.row_ptr[j]; l < B_t.row_ptr[j + 1]; l++)
if (A.cols_index[k] == B_t.cols_index[l]) {
sum += A.values[k] * B_t.values[l];
break;
}
if (sum != std::complex < int >(0, 0)) {
result[i][j] += sum;
}
}
}
}
return result;
}
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您可以尝试改善此算法的缩放,但是我会使用更好的算法。您正在为两个稀疏矩阵的产物分配一个密集的矩阵(错误,但这是旁边的)。这是浪费的,因为很少有两个稀疏矩阵的项目不会被长期致密。
您的算法也有错误的时间复杂性。您搜索B行的方式意味着您的复杂性具有额外的因素,例如每行的平均数量。更好的算法将假设每行中的索引都已排序,然后保留您进入该行多远的指针。
阅读有关“图形”的文献,以参考有效算法。
You can try to improve the scaling of this algorithm, but I would use a better algorithm. You are allocating a dense matrix (wrongly, but that's beside the point) for the product of two sparse matrices. That's wasteful since quite often the project of two sparse matrices will not be dense by a long shot.
Your algorithm also has the wrong time complexity. The way you search through the rows of B means that your complexity has an extra factor of something like the average number of nonzeros per row. A better algorithm would assume that the indices in each row are sorted, and then keep a pointer for how far you got into that row.
Read the literature on "Graph Blas" for references to efficient algorithms.