OPENCV摄像机边界被视为对象,仅在跨路径时检测到对象

发布于 2025-01-27 12:06:52 字数 2775 浏览 0 评论 0原文

我试图用相机检测对象。但是,只有外边界变成绿色,并且一旦将物体切开外边框,就会检测到它们。

https://i.sstatic.net/9tiqg.jpg 当它切开轮廓时,但不会检测到矩形。

如您所知,只有边界是绿色的,一旦对象将边框切割成一个物体。如果我要在屏幕中间放置其他东西,而这些东西不触及大纲边界,则不被视为对象。

我的代码:

import math
import numpy as np
import cv2 as cv
from threading import *

class robotVision(Thread):

    def run(self):
        self.cap = cv.VideoCapture(0)
        if not self.cap.isOpened():
            print("Cannot open camera")
            exit()
        while True:
            # Capture frame-by-frame
            self.ret, self.frame = self.cap.read()

            if not self.ret:
                print("Can't receive frame (stream end?). Exiting ...")
                break

            self.detectCookie()

            self.imshow()

            if cv.waitKey(1) == ord('q'):
                self.releaseStream()
                break

    def detectCookie(self):
        # turn scene gray and put a threshold on noise
        self.gray = cv.cvtColor(self.frame, cv.COLOR_BGR2GRAY)
        self.blur = cv.GaussianBlur(self.gray,(39, 39), 0)
        _, self.thresh = cv.threshold(self.blur, 75, 255, 0, cv.THRESH_BINARY)
        self.dilated = cv.dilate(self.thresh, (7, 7), iterations = 3)
        self.findContours()

        for cnt in self.contours:
            area = cv.contourArea(cnt)
            perimeter = cv.arcLength(cnt, True)

            if (perimeter != 0 and area != 0):
                #the rounding -> how round it is
                formFactor = 4 * math.pi * area / perimeter**2

            if (area > 100):
                self.drawContours(cnt)

    def releaseStream(self):
        # When everything done, release the capture
        self.cap.release()
        cv.destroyAllWindows()

    def imshow(self):
        cv.imshow("Gray capture (First cycle)", self.gray)
        cv.imshow("Blur capture (Second cycle)", self.blur)
        cv.imshow("Thresh capture (Third cycle)", self.thresh)
        cv.imshow("Dilated capture (Fourth cycle)", self.dilated)
        cv.imshow("Video capture (Final result)", self.frame)

    def findContours(self):
        self.contours, self.hierarchy = cv.findContours(self.dilated, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)

    def drawContours(self, target = "default"):
        if (target == "default"):
            cv.drawContours(self.frame, self.contours, -1, (0,255,0), 3)
        elif (isinstance(target, list)):
            cv.drawContours(self.frame, target, -1, (0,255,0), 3)
        else:
            cv.drawContours(self.frame, [target], -1, (0,255,0), 3)

我的问题:

我如何删除外线并检测对象而无需对象切开外线以被视为对象。

I am trying to detect objects with my camera. However only the outer border becomes green and objects are detected once they cut the outer border.

https://i.sstatic.net/9TiQG.jpg

You can see how it detects images when it cuts through the outlines, but it does not detect the rectangle.

as you can tell only the borders are green and once an object cuts the border it becomes an object. If I were to place something else in the middle of the screen which doesn't touch the outline borders it is not considered an object.

My code:

import math
import numpy as np
import cv2 as cv
from threading import *

class robotVision(Thread):

    def run(self):
        self.cap = cv.VideoCapture(0)
        if not self.cap.isOpened():
            print("Cannot open camera")
            exit()
        while True:
            # Capture frame-by-frame
            self.ret, self.frame = self.cap.read()

            if not self.ret:
                print("Can't receive frame (stream end?). Exiting ...")
                break

            self.detectCookie()

            self.imshow()

            if cv.waitKey(1) == ord('q'):
                self.releaseStream()
                break

    def detectCookie(self):
        # turn scene gray and put a threshold on noise
        self.gray = cv.cvtColor(self.frame, cv.COLOR_BGR2GRAY)
        self.blur = cv.GaussianBlur(self.gray,(39, 39), 0)
        _, self.thresh = cv.threshold(self.blur, 75, 255, 0, cv.THRESH_BINARY)
        self.dilated = cv.dilate(self.thresh, (7, 7), iterations = 3)
        self.findContours()

        for cnt in self.contours:
            area = cv.contourArea(cnt)
            perimeter = cv.arcLength(cnt, True)

            if (perimeter != 0 and area != 0):
                #the rounding -> how round it is
                formFactor = 4 * math.pi * area / perimeter**2

            if (area > 100):
                self.drawContours(cnt)

    def releaseStream(self):
        # When everything done, release the capture
        self.cap.release()
        cv.destroyAllWindows()

    def imshow(self):
        cv.imshow("Gray capture (First cycle)", self.gray)
        cv.imshow("Blur capture (Second cycle)", self.blur)
        cv.imshow("Thresh capture (Third cycle)", self.thresh)
        cv.imshow("Dilated capture (Fourth cycle)", self.dilated)
        cv.imshow("Video capture (Final result)", self.frame)

    def findContours(self):
        self.contours, self.hierarchy = cv.findContours(self.dilated, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)

    def drawContours(self, target = "default"):
        if (target == "default"):
            cv.drawContours(self.frame, self.contours, -1, (0,255,0), 3)
        elif (isinstance(target, list)):
            cv.drawContours(self.frame, target, -1, (0,255,0), 3)
        else:
            cv.drawContours(self.frame, [target], -1, (0,255,0), 3)

My question:

How can I remove the outer lines and detect objects without having the objects have to cut the outer lines to be considered an object.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文