如何保存Edmonds-Karp算法的最后BFS?

发布于 2025-01-27 09:16:03 字数 3748 浏览 4 评论 0 原文

我已经实现了以下C ++ Edmonds-karp算法:(

#include <iostream>
// Part of Cosmos by  OpenGenus Foundation //
#include <limits.h>
#include <string.h>
#include <queue>
using namespace std;
#define V 6
/* Returns true if there is a path from source 's' to sink 't' in
 * residual graph. Also fills parent[] to store the path */
bool bfs(int rGraph[V][V], int s, int t, int parent[])
{
    // Create a visited array and mark all vertices as not visited
    bool visited[V];
    memset(visited, 0, sizeof(visited));
    // Create a queue, enqueue source vertex and mark source vertex
    // as visited
    queue <int> q;
    q.push(s);
    visited[s] = true;
    parent[s] = -1;
    // Standard BFS Loop
    while (!q.empty())
    {
        int u = q.front();
        q.pop();
        for (int v = 0; v < V; v++)
            if (visited[v] == false && rGraph[u][v] > 0)
            {
                q.push(v);
                parent[v] = u;
                visited[v] = true;
            }
    }
    // If we reached sink in BFS starting from source, then return
    // true, else false
    return visited[t] == true;
}
// Returns tne maximum flow from s to t in the given graph
int fordFulkerson(int graph[V][V], int s, int t)
{
    int u, v;
    // Create a residual graph and fill the residual graph with
    // given capacities in the original graph as residual capacities
    // in residual graph
    int rGraph[V][V]; // Residual graph where rGraph[i][j] indicates
                      // residual capacity of edge from i to j (if there
                      // is an edge. If rGraph[i][j] is 0, then there is not)
    for (u = 0; u < V; u++)
        for (v = 0; v < V; v++)
            rGraph[u][v] = graph[u][v];
    int parent[V];  // This array is filled by BFS and to store path
    int max_flow = 0;  // There is no flow initially
    // Augment the flow while tere is path from source to sink
    while (bfs(rGraph, s, t, parent))
    {
        // Find minimum residual capacity of the edges along the
        // path filled by BFS. Or we can say find the maximum flow
        // through the path found.
        int path_flow = INT_MAX;
        for (v = t; v != s; v = parent[v])
        {
            u = parent[v];
            path_flow = min(path_flow, rGraph[u][v]);
        }
        // update residual capacities of the edges and reverse edges
        // along the path
        for (v = t; v != s; v = parent[v])
        {
            u = parent[v];
            rGraph[u][v] -= path_flow;
            rGraph[v][u] += path_flow;
        }
        // Add path flow to overall flow
        max_flow += path_flow;
    }
    // Return the overall flow
    return max_flow;
}

来源:

我想保存算法的最后BFS,所以我可以打印最小的切割(这是<代码> {上次BFS} {在最后一个BFS} 中找不到的其他所有内容)

我该怎么做?

每当调用 bfs 函数时,我都尝试过创建BFS矢量,并重置它,但是某种程度上似乎没有我想象的方法:

bfs函数:

bool bfs(int rGraph[V][V], int s, int t, int parent[], vector<int>& search)
{
...

 while (!q.empty())
    {
        int u = q.front();
        search.push_back(u);        
        q.pop();
...

在Fordfulkerson部分中:

vector<int>tempsearch;
vector<int>search;
 while (bfs(rGraph, s, t, parent, search))
    {

...
     tempsearch.resize(search);
     tempsearch = search     //this is now a pseudo-code variant
     search.resize(0);
    }
//at this point tempsearch or search should be the last bfs, no?
return max_flow;

I have implemented the following C++ Edmonds-Karp algorithm:

#include <iostream>
// Part of Cosmos by  OpenGenus Foundation //
#include <limits.h>
#include <string.h>
#include <queue>
using namespace std;
#define V 6
/* Returns true if there is a path from source 's' to sink 't' in
 * residual graph. Also fills parent[] to store the path */
bool bfs(int rGraph[V][V], int s, int t, int parent[])
{
    // Create a visited array and mark all vertices as not visited
    bool visited[V];
    memset(visited, 0, sizeof(visited));
    // Create a queue, enqueue source vertex and mark source vertex
    // as visited
    queue <int> q;
    q.push(s);
    visited[s] = true;
    parent[s] = -1;
    // Standard BFS Loop
    while (!q.empty())
    {
        int u = q.front();
        q.pop();
        for (int v = 0; v < V; v++)
            if (visited[v] == false && rGraph[u][v] > 0)
            {
                q.push(v);
                parent[v] = u;
                visited[v] = true;
            }
    }
    // If we reached sink in BFS starting from source, then return
    // true, else false
    return visited[t] == true;
}
// Returns tne maximum flow from s to t in the given graph
int fordFulkerson(int graph[V][V], int s, int t)
{
    int u, v;
    // Create a residual graph and fill the residual graph with
    // given capacities in the original graph as residual capacities
    // in residual graph
    int rGraph[V][V]; // Residual graph where rGraph[i][j] indicates
                      // residual capacity of edge from i to j (if there
                      // is an edge. If rGraph[i][j] is 0, then there is not)
    for (u = 0; u < V; u++)
        for (v = 0; v < V; v++)
            rGraph[u][v] = graph[u][v];
    int parent[V];  // This array is filled by BFS and to store path
    int max_flow = 0;  // There is no flow initially
    // Augment the flow while tere is path from source to sink
    while (bfs(rGraph, s, t, parent))
    {
        // Find minimum residual capacity of the edges along the
        // path filled by BFS. Or we can say find the maximum flow
        // through the path found.
        int path_flow = INT_MAX;
        for (v = t; v != s; v = parent[v])
        {
            u = parent[v];
            path_flow = min(path_flow, rGraph[u][v]);
        }
        // update residual capacities of the edges and reverse edges
        // along the path
        for (v = t; v != s; v = parent[v])
        {
            u = parent[v];
            rGraph[u][v] -= path_flow;
            rGraph[v][u] += path_flow;
        }
        // Add path flow to overall flow
        max_flow += path_flow;
    }
    // Return the overall flow
    return max_flow;
}

(source: https://iq.opengenus.org/edmonds-karp-algorithm-for-maximum-flow/)

I would like to save the last BFS of the algorithm, so I can print the minimal cut (which would be {last BFS} {everything else not found in the last BFS})

How do I do that?

I have tried creating a BFS vector every time the bfs function is called, and reset it, but somehow it doesn't seem to work how I imagined:

in bfs function:

bool bfs(int rGraph[V][V], int s, int t, int parent[], vector<int>& search)
{
...

 while (!q.empty())
    {
        int u = q.front();
        search.push_back(u);        
        q.pop();
...

in the fordFulkerson section:

vector<int>tempsearch;
vector<int>search;
 while (bfs(rGraph, s, t, parent, search))
    {

...
     tempsearch.resize(search);
     tempsearch = search     //this is now a pseudo-code variant
     search.resize(0);
    }
//at this point tempsearch or search should be the last bfs, no?
return max_flow;

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

陈年往事 2025-02-03 09:16:03

好吧,我找到了解决方案。
我们需要将访问的数组作为全局数组(或者您可以通过每个参数列表将其传递)。这样,每次刷新阵列时,它也会保存在整个程序中。

从那里开始,我们要做的就是为最小切割的输出功能编写输出功能:

void printMinCut(){
    for(int i = 0; i < visited.size(); i++){
         if(visited[i] == true) cout << i;
    }
    cout << endl;
    for(int i = 0; i < visited.size(); i++){
         if(visited[i] == false) cout << i;
    }
}

那里有!

Okay so I found a solution.
We need to have the visited array as a global array (or you can pass it through every single parameter list). This way, every time the array is refreshed, it is also saved in the whole program.

From there, all we have to do is write the output function for the minimal cut:

void printMinCut(){
    for(int i = 0; i < visited.size(); i++){
         if(visited[i] == true) cout << i;
    }
    cout << endl;
    for(int i = 0; i < visited.size(); i++){
         if(visited[i] == false) cout << i;
    }
}

And there you have it!

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文