IBM Watson NLU给出了“培训验证”失败。标签类别的样本太少。至少需要5个错误
我正在尝试在IBM Watson NLU中训练我的模型。我必须将电子邮件分类为2个标签。该实例已经创建,我也传递了正确的模型ID。
model_id = model['model_id']
model_to_view = nlu.get_classifications_model(model_id=model_id).get_result()
print("Information about the created NLU Classifications model:")
print(json.dumps(model_to_view, indent=2))
培训状态最初显示为“开始”,但此后显示以下提到的错误:
Information about the created NLU Classifications model:
{
"name": "MyClassificationsModel1",
"user_metadata": null,
"language": "en",
"description": null,
"model_version": "1.0.1",
"version": "1.0.1",
"workspace_id": null,
"version_description": null,
"status": "error",
"notices": [
{
"message": "Training data validation failed: Too few examples for label class. Minimum of 5 required"
}
],
"model_id": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
"features": [
"classifications"
],
"created": "2022-04-28T12:03:23Z",
"last_trained": "2022-04-28T12:03:23Z",
"last_deployed": null
}
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您的培训数据需要为每个分类标签提供5个样本。参见
用于分类培训数据要求。如果您有2个标签,则至少应有10(5个)样品。
Your training data needs to provide 5 samples for each classification label. See
https://cloud.ibm.com/docs/natural-language-understanding?topic=natural-language-understanding-classifications#classification-training-data-requirements
for classifications training data requirements. If you have 2 labels, there should be a minimum of 10 (5 each) samples.