线性恢复中的估计很小
因此,我试图在两个变量之间进行线性回归,自变量是“年”和一个“价格”。因此,我试图确定年份对价格的影响。我在r中进行了线性回归:
model_price_Year <- lm(data = audi, price ~ year)
summary(model_price_Year)
我得到以下结果:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.437e+06 8.503e+04 -75.71 <2e-16
year 3.203e+03 4.215e+01 75.98 <2e-16
估计值可以那么小吗?正确吗?我该如何解释?
So I am trying to make a linear regression between two variables, the independent variable being "year" and the dependent one "price". So I am trying to determine the influence year has on the price. I am making a linear regression in R like this:
model_price_Year <- lm(data = audi, price ~ year)
summary(model_price_Year)
And i get the following results:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.437e+06 8.503e+04 -75.71 <2e-16
year 3.203e+03 4.215e+01 75.98 <2e-16
Can the estimate value be that small? Is it correct? And how do i interpret it?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
估计并不小:
6.437E+06 = 6437000
3.203E+03 = 3203
如果您不想要科学符号,只需在脚本开头放置
options(Scipen = 9999)
。The estimates aren't small:
6.437e+06=6437000
3.203e+03=3203
If you don't want scientific notation, simply put
options(scipen = 9999)
at the beginning of your script.