当某些标签具有所有零时,语义分割的骰子得分
我正在计算二进制细分案例的骰子分数,在我的某些基础真理中,没有标签,即它具有所有零。因此,当我使用不同的批次大小进行推理时,我会得到不同的结果,尤其是批量尺寸= 1的最坏情况,我知道以下图所示的原因:即使在tp = 0: [结果描述] [1] [1]:https://i.sstatic.net/mhj3o.png
什么是逻辑解决方案,专家如何处理这个问题,一个可能的解决方案可以是:仅计算骰子得分,仅针对那些地面真相的预测, ; 0 这是发布结果的正确方法吗?我没有看到任何论文提到这个问题: 涉及该问题的已发表工作的任何链接将不胜感激。 谢谢
I am calculating Dice Score for binary segmentation case, in some of my ground truths there is no label, i.e. it has all zeros. So when I use a different batch size for inference I am getting different results, especially worst for batch size=1, I came to know the reason as shown in the following figure: It averages all the cases even when the TP=0:
[results descriptions][1]
[1]: https://i.sstatic.net/mHj3o.png
What is the logical solution, and how do the experts deal with this problem, one possible solution can be: Calculate Dice Score only for those predictions for which ground truth>0
Is it the right approach to publish the results? I didn't see any paper mentioning this issue:
Any link to the published work which dealt with this problem will be appreciated.
Thank You
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论