输入层的“ global_average_pooling1d”的输入0与层不兼容:预期ndim = 3,发现ndim = 2。收到完整的形状:(无,16)
我刚刚开始学习TensorFlow并出现了错误。我看着a 。我完成了这一集,并遇到了问题。我无法预测价值。当我尝试此错误时,会显示出这样的错误:
Traceback (most recent call last):
File "C:/Users/havil/Documents/GitHub/Python/Machine-Learning-Tutorial/Neural Network Tutorial/Tutorial 2.py", line 56, in <module>
predict = model.predict([test_review])
File "C:\Users\havil\anaconda3\envs\tf_3.7\lib\site-packages\keras\utils\traceback_utils.py", line 67, in error_handler
raise e.with_traceback(filtered_tb) from None
File "C:\Users\havil\anaconda3\envs\tf_3.7\lib\site-packages\tensorflow\python\framework\func_graph.py", line 1147, in autograph_handler
raise e.ag_error_metadata.to_exception(e)
ValueError: in user code:
File "C:\Users\havil\anaconda3\envs\tf_3.7\lib\site-packages\keras\engine\training.py", line 1801, in predict_function *
return step_function(self, iterator)
File "C:\Users\havil\anaconda3\envs\tf_3.7\lib\site-packages\keras\engine\training.py", line 1790, in step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "C:\Users\havil\anaconda3\envs\tf_3.7\lib\site-packages\keras\engine\training.py", line 1783, in run_step **
outputs = model.predict_step(data)
File "C:\Users\havil\anaconda3\envs\tf_3.7\lib\site-packages\keras\engine\training.py", line 1751, in predict_step
return self(x, training=False)
File "C:\Users\havil\anaconda3\envs\tf_3.7\lib\site-packages\keras\utils\traceback_utils.py", line 67, in error_handler
raise e.with_traceback(filtered_tb) from None
File "C:\Users\havil\anaconda3\envs\tf_3.7\lib\site-packages\keras\engine\input_spec.py", line 214, in assert_input_compatibility
raise ValueError(f'Input {input_index} of layer "{layer_name}" '
ValueError: Exception encountered when calling layer "sequential" (type Sequential).
Input 0 of layer "global_average_pooling1d" is incompatible with the layer: expected ndim=3, found ndim=2. Full shape received: (None, 16)
Call arguments received:
• inputs=('tf.Tensor(shape=(None,), dtype=int32)',)
• training=False
• mask=None
我的整个代码看起来像这样:
import tensorflow as tf
from tensorflow import keras
import numpy as np
data = keras.datasets.imdb
(train_data, train_labels), (test_data, test_labels) = data.load_data(num_words=10000)
print(train_data[0])
# decode Data
word_index = data.get_word_index()
word_index = {key: (value+3) for key, value in word_index.items()}
word_index["<PAD>"] = 0
word_index["<START>"] = 1
word_index["<UNK>"] = 2
word_index["<UNUSED>"] = 3
reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])
train_data = keras.preprocessing.sequence.pad_sequences(train_data, value=word_index["<PAD>"], padding="post", maxlen=250)
test_data = keras.preprocessing.sequence.pad_sequences(test_data, value=word_index["<PAD>"], padding="post", maxlen=250)
def decode_review(text):
return " ".join([reverse_word_index.get(i, "?") for i in text])
print(decode_review(test_data[0]))
model = keras.Sequential()
model.add(keras.layers.Embedding(10000, 16))
model.add(keras.layers.GlobalAveragePooling1D())
model.add(keras.layers.Dense(16, activation="relu"))
model.add(keras.layers.Dense(1, activation="sigmoid"))
model.summary()
model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
x_val = train_data[:10000]
x_train = train_data[10000:]
y_val = train_labels[:10000]
y_train = train_labels[10000:]
fitModel = model.fit(x_train, y_train, epochs=40, batch_size=512, validation_data=(x_val, y_val), verbose=1)
results = model.evaluate(test_data, test_labels)
print(results)
test_review = test_data[0]
predict = model.predict([test_review])
print("Review: ")
print(decode_review(test_review))
print("Prediction: " + str(predict[0]))
print("Actual: " + str(test_labels[0]))
print(results)
有人知道如何解决此错误吗?
I just started to learn Tensorflow and got an error. I watched a Neural Network Tutorial of Tech with Tim. I finished this episode and got a problem to the end. I couldn't predict the value. when i try it this error shows up:
Traceback (most recent call last):
File "C:/Users/havil/Documents/GitHub/Python/Machine-Learning-Tutorial/Neural Network Tutorial/Tutorial 2.py", line 56, in <module>
predict = model.predict([test_review])
File "C:\Users\havil\anaconda3\envs\tf_3.7\lib\site-packages\keras\utils\traceback_utils.py", line 67, in error_handler
raise e.with_traceback(filtered_tb) from None
File "C:\Users\havil\anaconda3\envs\tf_3.7\lib\site-packages\tensorflow\python\framework\func_graph.py", line 1147, in autograph_handler
raise e.ag_error_metadata.to_exception(e)
ValueError: in user code:
File "C:\Users\havil\anaconda3\envs\tf_3.7\lib\site-packages\keras\engine\training.py", line 1801, in predict_function *
return step_function(self, iterator)
File "C:\Users\havil\anaconda3\envs\tf_3.7\lib\site-packages\keras\engine\training.py", line 1790, in step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "C:\Users\havil\anaconda3\envs\tf_3.7\lib\site-packages\keras\engine\training.py", line 1783, in run_step **
outputs = model.predict_step(data)
File "C:\Users\havil\anaconda3\envs\tf_3.7\lib\site-packages\keras\engine\training.py", line 1751, in predict_step
return self(x, training=False)
File "C:\Users\havil\anaconda3\envs\tf_3.7\lib\site-packages\keras\utils\traceback_utils.py", line 67, in error_handler
raise e.with_traceback(filtered_tb) from None
File "C:\Users\havil\anaconda3\envs\tf_3.7\lib\site-packages\keras\engine\input_spec.py", line 214, in assert_input_compatibility
raise ValueError(f'Input {input_index} of layer "{layer_name}" '
ValueError: Exception encountered when calling layer "sequential" (type Sequential).
Input 0 of layer "global_average_pooling1d" is incompatible with the layer: expected ndim=3, found ndim=2. Full shape received: (None, 16)
Call arguments received:
• inputs=('tf.Tensor(shape=(None,), dtype=int32)',)
• training=False
• mask=None
My whole code looks like this:
import tensorflow as tf
from tensorflow import keras
import numpy as np
data = keras.datasets.imdb
(train_data, train_labels), (test_data, test_labels) = data.load_data(num_words=10000)
print(train_data[0])
# decode Data
word_index = data.get_word_index()
word_index = {key: (value+3) for key, value in word_index.items()}
word_index["<PAD>"] = 0
word_index["<START>"] = 1
word_index["<UNK>"] = 2
word_index["<UNUSED>"] = 3
reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])
train_data = keras.preprocessing.sequence.pad_sequences(train_data, value=word_index["<PAD>"], padding="post", maxlen=250)
test_data = keras.preprocessing.sequence.pad_sequences(test_data, value=word_index["<PAD>"], padding="post", maxlen=250)
def decode_review(text):
return " ".join([reverse_word_index.get(i, "?") for i in text])
print(decode_review(test_data[0]))
model = keras.Sequential()
model.add(keras.layers.Embedding(10000, 16))
model.add(keras.layers.GlobalAveragePooling1D())
model.add(keras.layers.Dense(16, activation="relu"))
model.add(keras.layers.Dense(1, activation="sigmoid"))
model.summary()
model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
x_val = train_data[:10000]
x_train = train_data[10000:]
y_val = train_labels[:10000]
y_train = train_labels[10000:]
fitModel = model.fit(x_train, y_train, epochs=40, batch_size=512, validation_data=(x_val, y_val), verbose=1)
results = model.evaluate(test_data, test_labels)
print(results)
test_review = test_data[0]
predict = model.predict([test_review])
print("Review: ")
print(decode_review(test_review))
print("Prediction: " + str(predict[0]))
print("Actual: " + str(test_labels[0]))
print(results)
Does anyone have an idea how to fix this error?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
我可以解决这个问题。 Model.Predict不接受正常列表。我只是用一个numpy阵列代替了它。
I could solve this problem. model.predict doesn´t accept normal Lists. I just replaced it with an Numpy array.
做到这一点
我也有同样的问题,但是我注意到预测不仅适用于单个输入,如果您对所有测试数据都可以 整天都在挣扎,真的想知道如何修复它
I have same issue, but i noticed that prediction does not work just for a single input, if you do the same with with all of the test data it works fine
It probably won't help you but i hope it does because i'm struggling with this all day long and really want to know how to fix it
我遇到了同样的问题,但是我通过将测试样本附加到空列表中,然后从那里进行预测,从而解决了问题
I had the same issue but I solved it by appending the test sample to an empty list then predicting it from there and it worked