用傅立叶回归器预测样品
我正在尝试使用机器学习(每周和年度季节性)创建多元多步骤预测。 我使用一些外源变量,包括傅立叶术语。我对在示例数据中测试模型的结果感到满意,但是现在我想开始生产并对完全看不见的数据进行真实的预测。尽管我可以更新其他回归器(变量),因为它们是虚拟变量并且与时间相关,但我不知道如何为未来的n个步骤生成新的傅立叶术语。 我在这里有一个理解的问题以及与您检查什么:当您根据周期性生成傅立叶术语以及用于分解您要预测时间的sin/cos的数量时,此过程应该独立于该值的值时间序列。那对吗? 如果是这样,如何扩展n个步骤的术语? 只是为了完整,我使用R。
谢谢
I'm trying to create a multivariate multi-step-ahead forecast using machine learning (weekly and yearly seasonality).
I use some exogenous variables, including Fourier terms. I'm happy with the results of testing the model with in sample data, but now I want to go for production and make real forecasts on completely unseen data. While I can update the other regressors (variables) since they are dummy variables and related to time, I don't know how I will generate new Fourier terms for the N steps ahead.
I have an understanding problem here and what to check it with you: when you generate the fourier terms based on periodicity and the number of sin/cos used to decompose the time serie you want to forecast this process should be independent on that values of the time series. Is that right?
If so, how do you extend the terms for the N steps?
Just for the sake of completeness, I use R.
Thank you
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
据我阅读和理解,您想获得有关傅立叶的未来n条术语。为此,您需要将计算出的时间范围转换为过去的某一点(例如N-1)。这只是简单的因果关系,您不能用傅立叶对未来进行建模(例如,您不能具有(n-1)= a(n + 1) + b(n-2) + c(n)。
From what I am reading and understanding, you want to get future N terms on the Fourier. To do this, you need to shift your calculated time frame to be some point in the past (say N-1). This is just simple causality, you cannot model the future with Fourier (for example, you cant have (N-1) = a(N+1) + b(N-2) + c(N).