如何基于两个列值将我在DF1中创建的唯一ID与DF2匹配?
我有两个数据范围,我正在努力将我在DF1创建的唯一ID与基于“名称”和“版本”值的DF2匹配。我需要在DF2中添加一个列,我们将其称为['ID'],其值与DF1中的唯一ID值匹配。条件是DF2中的“名称”和“版本”值都必须等于DF1中的相同的“名称”和“版本”,才能分配正确的ID值。 DF2具有DF1的所有元素,但它们是重复的。
df1 = pd.DataFrame(
{
'Unique ID': ['111', '222', '333', '444'],
'Name': ['A', 'A' ,'B','C'],
'Version': ['1.1', '1.2', '1.0', '1.1'],
'x': ['...', '...', '...', '...']
}
)
DF1
| UNIQUE ID | NAME | VERSION | X |
1| 111 | A | 1.1 | ... |
2| 222 | A | 1.2 | ... |
3| 333 | B | 1.0 | ... |
4| 444 | C | 1.1 | ... |
df2 = pd.DataFrame(
{
'Name': ['A', 'A', 'A', 'A', 'B'],
'Version': [ '1.1' ,'1.1', '1.1', '1.2', '1.0'],
'x': ['...', '...', '...', '...','...'],
'x': ['...', '...', '...', '...','...'],
}
)
DF2
| NAME | VERSION | X | X |
1 | A | 1.1 | ... |... |
2 | A | 1.1 | ... |... |
3 | A | 1.1 | ... |... |
4 | A | 1.2 | ... |... |
5 | B | 1.0 | ... |... |
DF2的所需输出:
df2
| NAME | VERSION | ID | X | X |
1 | A | 1.1 | 111 |... | ...|
2 | A | 1.1 | 111 |... | ...|
3 | A | 1.1 | 111 |... | ...|
4 | A | 1.2 | 222 |... | ...|
5 | B | 1.0 | 333 |... | ...|
尝试的代码:
df2['ID'] = df1[df1['name' + '_' + 'version'].isin(df2['name' + '_' + 'version'])]['Unique ID'].values
I have two dataframes, and I am struggling to match the unique ids that I created in df1 to df2 based on 'name' and 'version' values. I need to add a column to df2, let's call it ['ID'], whose values match with the unique id values in df1. The condition is that both the 'name' and 'version' values in df2 must equal the same 'name' and 'version' in df1 in order to be assigned the correct ID value. DF2 has all the elements of DF1 but they are repeated.
df1 = pd.DataFrame(
{
'Unique ID': ['111', '222', '333', '444'],
'Name': ['A', 'A' ,'B','C'],
'Version': ['1.1', '1.2', '1.0', '1.1'],
'x': ['...', '...', '...', '...']
}
)
DF1
| UNIQUE ID | NAME | VERSION | X |
1| 111 | A | 1.1 | ... |
2| 222 | A | 1.2 | ... |
3| 333 | B | 1.0 | ... |
4| 444 | C | 1.1 | ... |
df2 = pd.DataFrame(
{
'Name': ['A', 'A', 'A', 'A', 'B'],
'Version': [ '1.1' ,'1.1', '1.1', '1.2', '1.0'],
'x': ['...', '...', '...', '...','...'],
'x': ['...', '...', '...', '...','...'],
}
)
DF2
| NAME | VERSION | X | X |
1 | A | 1.1 | ... |... |
2 | A | 1.1 | ... |... |
3 | A | 1.1 | ... |... |
4 | A | 1.2 | ... |... |
5 | B | 1.0 | ... |... |
Desired Output for DF2:
DF2
| NAME | VERSION | ID | X | X |
1 | A | 1.1 | 111 |... | ...|
2 | A | 1.1 | 111 |... | ...|
3 | A | 1.1 | 111 |... | ...|
4 | A | 1.2 | 222 |... | ...|
5 | B | 1.0 | 333 |... | ...|
Attempted code:
df2['ID'] = df1[df1['name' + '_' + 'version'].isin(df2['name' + '_' + 'version'])]['Unique ID'].values
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
一种有点肮脏但有效的方式:
A way which is a little bit dirty but works :