如何从wxmaxima中一个点运动方程式绘制路径?
我有一个点的运动方程式:
x:3*sin(4*t);
y:2*cos(4*t);
我已经创建了一个向量:
r:[x,y];
并且进行了一些操作,但我不知道如何绘制路径(结果应该是椭圆)。
我尝试了各种命令,只有这给了我类似的东西与我想实现的目标相似:
load(draw);
draw2d(parametric(x,y,t,0,10));
但是结果很奇怪:
I have the following equations of motion of a point:
x:3*sin(4*t);
y:2*cos(4*t);
I already created a vector:
r:[x,y];
and did some operations but I don't know how to plot the path (the result should be an ellipse).
I tried various commands and only this gave me something similar to what I want to achieve:
load(draw);
draw2d(parametric(x,y,t,0,10));
But the result is strange:
Is there a way to get a proper plot in form of an ellipse in wxMaxima in this case?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
看起来
draw2d(parametric(...))
没有应用自适应细分以获得更平滑的绘图。它只是从固定网格中进行采样。您可以说draw2d(nticks =< gallumber>,parametric(...))
获得一个更平滑的绘图,但是问题并没有消失。尝试
plot2d([[parametric,x,y,[t,0,10]])
- 我发现这给出了一个很好的平滑图。Looks like
draw2d(parametric(...))
is not applying adaptive subdivision to get a smoother plot; it's just sampling from a fixed grid. You can saydraw2d(nticks = <large number>, parametric(...))
to get a somewhat smoother plot, but the problem doesn't go away.Try
plot2d([parametric, x, y, [t, 0, 10]])
-- I find that gives a nice smooth plot.