pyspark的HDFS配置

发布于 2025-01-26 03:07:22 字数 4694 浏览 1 评论 0原文

我尝试使用pyspark读取来自HDFS的文件。 代码如下:

import numpy as np
import pandas as pd 
from pyspark.sql import SparkSession
import json
import sys
import io   
import os

os.environ["HADOOP_USER_NAME"] = "hdfs"

spark = SparkSession.builder.master("local") \
                .appName('PySpark_Neural_Network') \
                .config("spark.hadoop.dfs.client.use.datanode.hostname", "true") \
                .config("spark.driver.memory", "16g")\
                .getOrCreate()


df = spark.read.format("avro").load("hdfs://localhost:8020/data/file.avro", header=True)
df.show()

使用命令:

spark-submit --packages org.apache.spark:spark-avro_2.12:3.1.2 script.py

但是我收到以下错误:

py4j.protocol.Py4JJavaError: An error occurred while calling o39.load.
: java.nio.channels.UnresolvedAddressException
    at sun.nio.ch.Net.checkAddress(Net.java:100)
    at sun.nio.ch.SocketChannelImpl.connect(SocketChannelImpl.java:620)
    at org.apache.hadoop.net.SocketIOWithTimeout.connect(SocketIOWithTimeout.java:192)
    at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:531)
    at org.apache.hadoop.hdfs.DFSClient.newConnectedPeer(DFSClient.java:2939)
    at org.apache.hadoop.hdfs.client.impl.BlockReaderFactory.nextTcpPeer(BlockReaderFactory.java:821)
    at org.apache.hadoop.hdfs.client.impl.BlockReaderFactory.getRemoteBlockReaderFromTcp(BlockReaderFactory.java:746)
    at org.apache.hadoop.hdfs.client.impl.BlockReaderFactory.build(BlockReaderFactory.java:379)
    at org.apache.hadoop.hdfs.DFSInputStream.getBlockReader(DFSInputStream.java:644)
    at org.apache.hadoop.hdfs.DFSInputStream.blockSeekTo(DFSInputStream.java:575)
    at org.apache.hadoop.hdfs.DFSInputStream.readWithStrategy(DFSInputStream.java:757)
    at org.apache.hadoop.hdfs.DFSInputStream.read(DFSInputStream.java:829)
    at java.io.DataInputStream.read(DataInputStream.java:149)
    at org.apache.avro.mapred.FsInput.read(FsInput.java:54)
    at org.apache.avro.file.DataFileReader.openReader(DataFileReader.java:55)
    at org.apache.spark.sql.avro.AvroUtils$.$anonfun$inferAvroSchemaFromFiles$3(AvroUtils.scala:139)
    at org.apache.spark.util.Utils$.tryWithResource(Utils.scala:2622)
    at org.apache.spark.sql.avro.AvroUtils$.$anonfun$inferAvroSchemaFromFiles$1(AvroUtils.scala:137)
    at scala.collection.Iterator$$anon$10.next(Iterator.scala:459)
    at scala.collection.TraversableOnce.collectFirst(TraversableOnce.scala:148)
    at scala.collection.TraversableOnce.collectFirst$(TraversableOnce.scala:135)
    at scala.collection.AbstractIterator.collectFirst(Iterator.scala:1429)
    at org.apache.spark.sql.avro.AvroUtils$.inferAvroSchemaFromFiles(AvroUtils.scala:151)
    at org.apache.spark.sql.avro.AvroUtils$.$anonfun$inferSchema$3(AvroUtils.scala:60)
    at scala.Option.getOrElse(Option.scala:189)
    at org.apache.spark.sql.avro.AvroUtils$.inferSchema(AvroUtils.scala:59)
    at org.apache.spark.sql.avro.AvroFileFormat.inferSchema(AvroFileFormat.scala:58)
    at org.apache.spark.sql.execution.datasources.DataSource.$anonfun$getOrInferFileFormatSchema$11(DataSource.scala:209)
    at scala.Option.orElse(Option.scala:447)
    at org.apache.spark.sql.execution.datasources.DataSource.getOrInferFileFormatSchema(DataSource.scala:206)
    at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:419)
    at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:325)
    at org.apache.spark.sql.DataFrameReader.$anonfun$load$3(DataFrameReader.scala:307)
    at scala.Option.getOrElse(Option.scala:189)
    at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:307)
    at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:239)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:282)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:238)
    at java.lang.Thread.run(Thread.java:748)

我相信HDFS对Pyspark的配置存在问题。 (我的Hadoop文件夹中没有HDFS-site.xml文件) 我想念什么?

谢谢

编辑:我解决了!问题在etc/hosts文件中:使用Pyspark时,必须添加Namenode和DataNode的所有IP。现在起作用。

I' tryng to read a file from HDFS using pyspark.
The code is the following:

import numpy as np
import pandas as pd 
from pyspark.sql import SparkSession
import json
import sys
import io   
import os

os.environ["HADOOP_USER_NAME"] = "hdfs"

spark = SparkSession.builder.master("local") \
                .appName('PySpark_Neural_Network') \
                .config("spark.hadoop.dfs.client.use.datanode.hostname", "true") \
                .config("spark.driver.memory", "16g")\
                .getOrCreate()


df = spark.read.format("avro").load("hdfs://localhost:8020/data/file.avro", header=True)
df.show()

using the command:

spark-submit --packages org.apache.spark:spark-avro_2.12:3.1.2 script.py

But I got the following Error:

py4j.protocol.Py4JJavaError: An error occurred while calling o39.load.
: java.nio.channels.UnresolvedAddressException
    at sun.nio.ch.Net.checkAddress(Net.java:100)
    at sun.nio.ch.SocketChannelImpl.connect(SocketChannelImpl.java:620)
    at org.apache.hadoop.net.SocketIOWithTimeout.connect(SocketIOWithTimeout.java:192)
    at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:531)
    at org.apache.hadoop.hdfs.DFSClient.newConnectedPeer(DFSClient.java:2939)
    at org.apache.hadoop.hdfs.client.impl.BlockReaderFactory.nextTcpPeer(BlockReaderFactory.java:821)
    at org.apache.hadoop.hdfs.client.impl.BlockReaderFactory.getRemoteBlockReaderFromTcp(BlockReaderFactory.java:746)
    at org.apache.hadoop.hdfs.client.impl.BlockReaderFactory.build(BlockReaderFactory.java:379)
    at org.apache.hadoop.hdfs.DFSInputStream.getBlockReader(DFSInputStream.java:644)
    at org.apache.hadoop.hdfs.DFSInputStream.blockSeekTo(DFSInputStream.java:575)
    at org.apache.hadoop.hdfs.DFSInputStream.readWithStrategy(DFSInputStream.java:757)
    at org.apache.hadoop.hdfs.DFSInputStream.read(DFSInputStream.java:829)
    at java.io.DataInputStream.read(DataInputStream.java:149)
    at org.apache.avro.mapred.FsInput.read(FsInput.java:54)
    at org.apache.avro.file.DataFileReader.openReader(DataFileReader.java:55)
    at org.apache.spark.sql.avro.AvroUtils$.$anonfun$inferAvroSchemaFromFiles$3(AvroUtils.scala:139)
    at org.apache.spark.util.Utils$.tryWithResource(Utils.scala:2622)
    at org.apache.spark.sql.avro.AvroUtils$.$anonfun$inferAvroSchemaFromFiles$1(AvroUtils.scala:137)
    at scala.collection.Iterator$anon$10.next(Iterator.scala:459)
    at scala.collection.TraversableOnce.collectFirst(TraversableOnce.scala:148)
    at scala.collection.TraversableOnce.collectFirst$(TraversableOnce.scala:135)
    at scala.collection.AbstractIterator.collectFirst(Iterator.scala:1429)
    at org.apache.spark.sql.avro.AvroUtils$.inferAvroSchemaFromFiles(AvroUtils.scala:151)
    at org.apache.spark.sql.avro.AvroUtils$.$anonfun$inferSchema$3(AvroUtils.scala:60)
    at scala.Option.getOrElse(Option.scala:189)
    at org.apache.spark.sql.avro.AvroUtils$.inferSchema(AvroUtils.scala:59)
    at org.apache.spark.sql.avro.AvroFileFormat.inferSchema(AvroFileFormat.scala:58)
    at org.apache.spark.sql.execution.datasources.DataSource.$anonfun$getOrInferFileFormatSchema$11(DataSource.scala:209)
    at scala.Option.orElse(Option.scala:447)
    at org.apache.spark.sql.execution.datasources.DataSource.getOrInferFileFormatSchema(DataSource.scala:206)
    at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:419)
    at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:325)
    at org.apache.spark.sql.DataFrameReader.$anonfun$load$3(DataFrameReader.scala:307)
    at scala.Option.getOrElse(Option.scala:189)
    at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:307)
    at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:239)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:282)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:238)
    at java.lang.Thread.run(Thread.java:748)

I believe that there is a problem in the configuration of HDFS for pyspark. (I don't have hdfs-site.xml file in my Hadoop folder)
What am I missing?

Thank you

EDIT: I resolved! The problem was inside the etc/hosts file: when you use pyspark you must add ALL the IP of namenode and datanode. Now it works.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

唠甜嗑 2025-02-02 03:07:22

更改您的代码如下。

from pyspark.sql import SparkSession  
import os

os.environ["HADOOP_USER_NAME"] = "hdfs"

spark = SparkSession.builder.master("local") \
                .appName('PySpark_Neural_Network') \
                .config("spark.hadoop.dfs.client.use.datanode.hostname", "true") \
                .config("spark.driver.memory", "16g")\
                .getOrCreate()


df = spark.read.format("avro").load("hdfs://localhost:8020/data/", header=True)
df.show()

从位置读取文件时,必须简单地提供路径,直到包含数据的父文件夹为止。 Beyound此,Spark DataFramEreader类可以加载AVRO文件,因为您在阅读HDFS路径时使用了avro方法

Change your code as follows.

from pyspark.sql import SparkSession  
import os

os.environ["HADOOP_USER_NAME"] = "hdfs"

spark = SparkSession.builder.master("local") \
                .appName('PySpark_Neural_Network') \
                .config("spark.hadoop.dfs.client.use.datanode.hostname", "true") \
                .config("spark.driver.memory", "16g")\
                .getOrCreate()


df = spark.read.format("avro").load("hdfs://localhost:8020/data/", header=True)
df.show()

When reading files from a location, one must simply provide the path till the parent folder that contains the data. Beyound this, the Spark DataframeReader class can load the avro files since you have used the avro method while reading the the HDFS path

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文