pyspark的HDFS配置
我尝试使用pyspark读取来自HDFS的文件。 代码如下:
import numpy as np
import pandas as pd
from pyspark.sql import SparkSession
import json
import sys
import io
import os
os.environ["HADOOP_USER_NAME"] = "hdfs"
spark = SparkSession.builder.master("local") \
.appName('PySpark_Neural_Network') \
.config("spark.hadoop.dfs.client.use.datanode.hostname", "true") \
.config("spark.driver.memory", "16g")\
.getOrCreate()
df = spark.read.format("avro").load("hdfs://localhost:8020/data/file.avro", header=True)
df.show()
使用命令:
spark-submit --packages org.apache.spark:spark-avro_2.12:3.1.2 script.py
但是我收到以下错误:
py4j.protocol.Py4JJavaError: An error occurred while calling o39.load.
: java.nio.channels.UnresolvedAddressException
at sun.nio.ch.Net.checkAddress(Net.java:100)
at sun.nio.ch.SocketChannelImpl.connect(SocketChannelImpl.java:620)
at org.apache.hadoop.net.SocketIOWithTimeout.connect(SocketIOWithTimeout.java:192)
at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:531)
at org.apache.hadoop.hdfs.DFSClient.newConnectedPeer(DFSClient.java:2939)
at org.apache.hadoop.hdfs.client.impl.BlockReaderFactory.nextTcpPeer(BlockReaderFactory.java:821)
at org.apache.hadoop.hdfs.client.impl.BlockReaderFactory.getRemoteBlockReaderFromTcp(BlockReaderFactory.java:746)
at org.apache.hadoop.hdfs.client.impl.BlockReaderFactory.build(BlockReaderFactory.java:379)
at org.apache.hadoop.hdfs.DFSInputStream.getBlockReader(DFSInputStream.java:644)
at org.apache.hadoop.hdfs.DFSInputStream.blockSeekTo(DFSInputStream.java:575)
at org.apache.hadoop.hdfs.DFSInputStream.readWithStrategy(DFSInputStream.java:757)
at org.apache.hadoop.hdfs.DFSInputStream.read(DFSInputStream.java:829)
at java.io.DataInputStream.read(DataInputStream.java:149)
at org.apache.avro.mapred.FsInput.read(FsInput.java:54)
at org.apache.avro.file.DataFileReader.openReader(DataFileReader.java:55)
at org.apache.spark.sql.avro.AvroUtils$.$anonfun$inferAvroSchemaFromFiles$3(AvroUtils.scala:139)
at org.apache.spark.util.Utils$.tryWithResource(Utils.scala:2622)
at org.apache.spark.sql.avro.AvroUtils$.$anonfun$inferAvroSchemaFromFiles$1(AvroUtils.scala:137)
at scala.collection.Iterator$$anon$10.next(Iterator.scala:459)
at scala.collection.TraversableOnce.collectFirst(TraversableOnce.scala:148)
at scala.collection.TraversableOnce.collectFirst$(TraversableOnce.scala:135)
at scala.collection.AbstractIterator.collectFirst(Iterator.scala:1429)
at org.apache.spark.sql.avro.AvroUtils$.inferAvroSchemaFromFiles(AvroUtils.scala:151)
at org.apache.spark.sql.avro.AvroUtils$.$anonfun$inferSchema$3(AvroUtils.scala:60)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.sql.avro.AvroUtils$.inferSchema(AvroUtils.scala:59)
at org.apache.spark.sql.avro.AvroFileFormat.inferSchema(AvroFileFormat.scala:58)
at org.apache.spark.sql.execution.datasources.DataSource.$anonfun$getOrInferFileFormatSchema$11(DataSource.scala:209)
at scala.Option.orElse(Option.scala:447)
at org.apache.spark.sql.execution.datasources.DataSource.getOrInferFileFormatSchema(DataSource.scala:206)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:419)
at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:325)
at org.apache.spark.sql.DataFrameReader.$anonfun$load$3(DataFrameReader.scala:307)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:307)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:239)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
我相信HDFS对Pyspark的配置存在问题。 (我的Hadoop文件夹中没有HDFS-site.xml文件) 我想念什么?
谢谢
编辑:我解决了!问题在etc/hosts
文件中:使用Pyspark时,必须添加Namenode和DataNode的所有IP。现在起作用。
I' tryng to read a file from HDFS using pyspark.
The code is the following:
import numpy as np
import pandas as pd
from pyspark.sql import SparkSession
import json
import sys
import io
import os
os.environ["HADOOP_USER_NAME"] = "hdfs"
spark = SparkSession.builder.master("local") \
.appName('PySpark_Neural_Network') \
.config("spark.hadoop.dfs.client.use.datanode.hostname", "true") \
.config("spark.driver.memory", "16g")\
.getOrCreate()
df = spark.read.format("avro").load("hdfs://localhost:8020/data/file.avro", header=True)
df.show()
using the command:
spark-submit --packages org.apache.spark:spark-avro_2.12:3.1.2 script.py
But I got the following Error:
py4j.protocol.Py4JJavaError: An error occurred while calling o39.load.
: java.nio.channels.UnresolvedAddressException
at sun.nio.ch.Net.checkAddress(Net.java:100)
at sun.nio.ch.SocketChannelImpl.connect(SocketChannelImpl.java:620)
at org.apache.hadoop.net.SocketIOWithTimeout.connect(SocketIOWithTimeout.java:192)
at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:531)
at org.apache.hadoop.hdfs.DFSClient.newConnectedPeer(DFSClient.java:2939)
at org.apache.hadoop.hdfs.client.impl.BlockReaderFactory.nextTcpPeer(BlockReaderFactory.java:821)
at org.apache.hadoop.hdfs.client.impl.BlockReaderFactory.getRemoteBlockReaderFromTcp(BlockReaderFactory.java:746)
at org.apache.hadoop.hdfs.client.impl.BlockReaderFactory.build(BlockReaderFactory.java:379)
at org.apache.hadoop.hdfs.DFSInputStream.getBlockReader(DFSInputStream.java:644)
at org.apache.hadoop.hdfs.DFSInputStream.blockSeekTo(DFSInputStream.java:575)
at org.apache.hadoop.hdfs.DFSInputStream.readWithStrategy(DFSInputStream.java:757)
at org.apache.hadoop.hdfs.DFSInputStream.read(DFSInputStream.java:829)
at java.io.DataInputStream.read(DataInputStream.java:149)
at org.apache.avro.mapred.FsInput.read(FsInput.java:54)
at org.apache.avro.file.DataFileReader.openReader(DataFileReader.java:55)
at org.apache.spark.sql.avro.AvroUtils$.$anonfun$inferAvroSchemaFromFiles$3(AvroUtils.scala:139)
at org.apache.spark.util.Utils$.tryWithResource(Utils.scala:2622)
at org.apache.spark.sql.avro.AvroUtils$.$anonfun$inferAvroSchemaFromFiles$1(AvroUtils.scala:137)
at scala.collection.Iterator$anon$10.next(Iterator.scala:459)
at scala.collection.TraversableOnce.collectFirst(TraversableOnce.scala:148)
at scala.collection.TraversableOnce.collectFirst$(TraversableOnce.scala:135)
at scala.collection.AbstractIterator.collectFirst(Iterator.scala:1429)
at org.apache.spark.sql.avro.AvroUtils$.inferAvroSchemaFromFiles(AvroUtils.scala:151)
at org.apache.spark.sql.avro.AvroUtils$.$anonfun$inferSchema$3(AvroUtils.scala:60)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.sql.avro.AvroUtils$.inferSchema(AvroUtils.scala:59)
at org.apache.spark.sql.avro.AvroFileFormat.inferSchema(AvroFileFormat.scala:58)
at org.apache.spark.sql.execution.datasources.DataSource.$anonfun$getOrInferFileFormatSchema$11(DataSource.scala:209)
at scala.Option.orElse(Option.scala:447)
at org.apache.spark.sql.execution.datasources.DataSource.getOrInferFileFormatSchema(DataSource.scala:206)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:419)
at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:325)
at org.apache.spark.sql.DataFrameReader.$anonfun$load$3(DataFrameReader.scala:307)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:307)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:239)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
I believe that there is a problem in the configuration of HDFS for pyspark. (I don't have hdfs-site.xml file in my Hadoop folder)
What am I missing?
Thank you
EDIT: I resolved! The problem was inside the etc/hosts
file: when you use pyspark you must add ALL the IP of namenode and datanode. Now it works.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
更改您的代码如下。
从位置读取文件时,必须简单地提供路径,直到包含数据的父文件夹为止。 Beyound此,Spark DataFramEreader类可以加载AVRO文件,因为您在阅读HDFS路径时使用了
avro
方法Change your code as follows.
When reading files from a location, one must simply provide the path till the parent folder that contains the data. Beyound this, the Spark DataframeReader class can load the avro files since you have used the
avro
method while reading the the HDFS path