为什么Auto Arima会生成最佳模型,而Q订单超过了我的预设范围?
我想创建一个自动Arima模型,以自动选择最佳参数值。我为Q设置的值范围是[1,2]。但是,Auto Arima生成的最佳Q值是0。有人知道为什么它是吗?
以下是我的代码
sarimax_model = auto_arima(df_x_train ['y'],exogenous = df_x_train [['black_friday_ind','holady_season_ind','covid_ind','covid_ind'] = 1,max_d = 1,max_q = 2,start_p = 0,d = 1,start_q = 1,max_p = 1,max_d = 1,max_q = 1,m = sishityal_periods,inderional_criterion ='aic',aicwise',stepwise = true) /code>
I would like to create an auto arima model to automatically select the best parameter values. The value range that I set for q is [1,2]. However, the best q value generated by auto arima is 0. Does anyone know why it is?
Below is my code
sarimax_model = auto_arima(df_x_train['y'],exogenous=df_x_train[['black_friday_ind','holiday_season_ind','covid_ind']],start_p=0,d=1,start_q=1,max_p=1,max_d=1,max_q=2, start_P=0,D=1,start_Q=1,max_P=1,max_D=1,max_Q=1, m=seasonal_periods, information_criterion='aic',stepwise=True)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您正在通过AIC(AKAIKE信息标准)进行测试,而最低的AIC是自动化模型选择的最佳模型。因此,您会看到Q订单0。
如果您可以共享
sarimax_model.summary()
,那么我们可以看到最低的AIC。但是,您需要小心自动化模型选择。它非常取决于您的输入数据,并且将参数给予该函数。参数需要与数据(季节性,季节性,季节性差异顺序等)相匹配。
您可以通过ACF和PACF图手动验证P和Q订单,也可以检查诊断图是否有残留物的正态性和相关性。
You are testing via AIC (Akaike Information Criterion) and the lowest AIC is the best model for automated model selection. So, you see 0 for q order.
If you can share
sarimax_model.summary()
then we can see the lowest AIC.But, you need to be careful with automated model selection. It is very dependent on your input data and the parameters are given to the function. Parameters need to match with the data (seasonality, seasonal period, seasonal difference order, etc).
You can verify your P and Q orders manually via ACF and PACF plots and also good to check diagnostic plots for normality and correlation of residuals.