如何在Python中省略自相关绘图时的0滞后? (StatsModels)

发布于 2025-01-25 14:09:03 字数 1247 浏览 4 评论 0原文

我正在尝试处理Python中的自相关,并正在使用StatsModels的Plot_acf和PACF。 我想绘制看起来像StatsModels的数字的数字。所以我别无选择,只能使用这个库。

剪切追逐,我的数据中没有显着的相关性,因此我想忽略始终具有最大相关性的零滞后。最好从滞后= 1或2绘制数字。有什么办法可以做到这一点吗?

在这里,它们是我的代码,我一直在尝试找出清晰的解决方案...请帮助我!

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
register_matplotlib_converters
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

# PNA
# read data
df_pna = pd.read_csv('pna_data.txt', index_col=0, header=None, delim_whitespace=True, skiprows=[0,1,2,75,76,77,78,79])
df_pna.rename(columns = {1:'Jan', 2:'Feb', 3:'Mar', 4:'Apr', 5:'May', 6:'Jun', 7:'Jul', 8:'Aug', 9:'Sep', 10:'Oct', 11:'Nov', 12:'Dec'}, inplace = True)


# autocorrelation
empty_pna = []
for k in range(len(df_pna.columns)):
    empty_pna.append(df_pna.iloc[:,k].to_list())

months_pna = []
for i in empty_pna:
    for j in i:
        months_pna.append(j)

# plot
# satsmodels
plt.close()
fig = plt.figure(figsize=(7,8))
ax1 = fig.add_subplot(2, 1, 1)
ax2 = fig.add_subplot(2, 1, 2)

plot_acf(months_pna, lags=20, ax=ax1)
ax1.set_title('PNA AC with lags 20', fontsize=10)

plot_pacf(months_pna, lags=20, method='ywm', ax=ax2)
ax2.set_title('PNA PAC with lags 20', fontsize=10)

plt.show()
plt.close()

I'm trying to dealing with autocorrelation in python, and been using plot_acf and pacf from statsmodels.
I want to plot figures looking like statsmodels' figures. So I have no choice but using this library.

Cut to the chase, there is no that significant correlation in my data so I'd like to omit zero lag which always has maximum correlation. It would be better to plot figures from lags=1 or 2. Is there any way to do this?

Under here, they are my codes I've been trying to find out the clear solution... Please help me!

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
register_matplotlib_converters
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

# PNA
# read data
df_pna = pd.read_csv('pna_data.txt', index_col=0, header=None, delim_whitespace=True, skiprows=[0,1,2,75,76,77,78,79])
df_pna.rename(columns = {1:'Jan', 2:'Feb', 3:'Mar', 4:'Apr', 5:'May', 6:'Jun', 7:'Jul', 8:'Aug', 9:'Sep', 10:'Oct', 11:'Nov', 12:'Dec'}, inplace = True)


# autocorrelation
empty_pna = []
for k in range(len(df_pna.columns)):
    empty_pna.append(df_pna.iloc[:,k].to_list())

months_pna = []
for i in empty_pna:
    for j in i:
        months_pna.append(j)

# plot
# satsmodels
plt.close()
fig = plt.figure(figsize=(7,8))
ax1 = fig.add_subplot(2, 1, 1)
ax2 = fig.add_subplot(2, 1, 2)

plot_acf(months_pna, lags=20, ax=ax1)
ax1.set_title('PNA AC with lags 20', fontsize=10)

plot_pacf(months_pna, lags=20, method='ywm', ax=ax2)
ax2.set_title('PNA PAC with lags 20', fontsize=10)

plt.show()
plt.close()

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

紫轩蝶泪 2025-02-01 14:09:04

通过Zero = false省略滞后零:

plot_pacf(months_pna, lags=20, method='ywm', ax=ax2, zero=False)

Pass zero=False to omit lag zero:

plot_pacf(months_pna, lags=20, method='ywm', ax=ax2, zero=False)
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文