基于分类数据的分类
我有一个
Inp1 Inp2 Output
A,B,C AI,UI,JI Animals
L,M,N LI,DO,LI Noun
X,Y AI,UI Extras
用于这些值的数据集,我需要应用ML算法。哪种算法最适合在这些组之间找到关系以将输出类分配给它们?
I have a dataset
Inp1 Inp2 Output
A,B,C AI,UI,JI Animals
L,M,N LI,DO,LI Noun
X,Y AI,UI Extras
For these values, I need to apply a ML algorithm. Which algorithm would be best suited to find relations in between these groups to assign an output class to them?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
假设每个单元格是一个列表(因为您在每个单元中存储了多个字符串),并且您不在寻找特定的编码。以下应该有效。它也可以调整以适合不同的编码。
输出:
如果我的假设不正确,或者这不是您正在寻找的,请告诉我。
Assuming each cell is a list (as you have multiple strings stored in each), and that you are not looking for a specific encoding. The following should work. It can also be adjusted to suit different encodings.
output:
if my assumptions are incorrect or this is not what you're looking for let me know.
如您提到的,您将应用ML算法(例如分类),我认为一个热编码是您想要的。
请求格式:
此格式无法帮助您将模型训练为单个单元格中的多个标签。但是,您必须像 ohe 一样再次预处理。
建议格式:< / strong>
以后您可以按照您的模型要求编码 / OHE输出字段。
愉快的学习!
As you mentioned, you are going to apply ML algorithm (say classification), I think One Hot Encoding is what you are looking for.
Requested format:
This format can't help you to train your model as multiple labels in a single cell. However you have to pre-process again like OHE.
Suggesting format:
Hereafter you can label encode / ohe the output field as per your model requires.
Happy learning !
BCE用于多标签分类,而分类CE则用于每个示例属于单个类的多类分类。在您的任务中,您需要了解一个示例,如果您仅在单个类中结束(CE)或单个示例可能以多个类(BCE)结束。可能第二个是正确的,因为动物可以是名词。 )
BCE is for multi-label classifications, whereas categorical CE is for multi-class classification where each example belongs to a single class. In your task you need to understand if for a single example you end in a single class only (CE) or single example may end in multiple classes (BCE). Probable the second is true since animal can be a noun. ;)