如何检测与背景融合的对象?

发布于 2025-01-25 04:36:29 字数 1861 浏览 3 评论 0 原文

我是一个初学者,我正在尝试将轮廓应用于左侧的白色遥控器,该遥控器与背景共享相同的颜色。

a = cv2.imread(file_name)
imgGray = cv2.cvtColor(a,cv2.COLOR_BGR2GRAY)

imgGray = cv2.GaussianBlur(imgGray,(11,11),20)

k5 = np.array([[-1,-1,-1],[-1,9,-1],[-1,-1,-1]])
imgGray = cv2.filter2D(imgGray,-1,k5)

cv2.namedWindow("Control")
cv2.createTrackbar("blocksize","Control",33,1000,f)
cv2.createTrackbar("c","Control",3,100,f)
while True:
    strel = cv2.getStructuringElement(cv2.MORPH_CROSS,(3,3))
    blocksize = cv2.getTrackbarPos("blocksize","Control")
    c = cv2.getTrackbarPos("c","Control")

    if blocksize%2==0:
        blocksize += 1
    thrash = cv2.adaptiveThreshold(imgGray,255,cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV,blockSize=blocksize,C=c)
    thrash1 = cv2.adaptiveThreshold(imgGray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,blockSize=blocksize,C=c)

    cv2.imshow("mean",thrash)
    cv2.imshow("gaussian",thrash1)
    #r,thrash = cv2.threshold(imgGray,150,255,cv2.THRESH_BINARY_INV)
    key = cv2.waitKey(1000)
    if key == 32 or iter == -1:
         break


edges = cv2.Canny(thrash,100,200)
cv2.imshow('sharpen',sharpen)
cv2.imshow('edges',edges)
cv2.imshow('grey ',imgGray)
cv2.imshow('thrash ',thrash)
cv2.waitKey(0)
circles = cv2.HoughCircles(imgGray,cv2.HOUGH_GRADIENT,1,60,param1=240,param2=50,minRadius=0,maxRadius=0)
contours,_ = cv2.findContours(thrash,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
putlabel(circles,a,contours)

这些是我尝试的东西,我还尝试了形态学操作,例如扩张,侵蚀,打开和关闭,但我仍然无法获得结果。

以下是我最好的结果,但是噪音太严重,遥控器没有完全概述。

I am a beginner and I am trying to apply an outline to the white remote control on the left that shares the same color with the background.
enter image description here

a = cv2.imread(file_name)
imgGray = cv2.cvtColor(a,cv2.COLOR_BGR2GRAY)

imgGray = cv2.GaussianBlur(imgGray,(11,11),20)

k5 = np.array([[-1,-1,-1],[-1,9,-1],[-1,-1,-1]])
imgGray = cv2.filter2D(imgGray,-1,k5)

cv2.namedWindow("Control")
cv2.createTrackbar("blocksize","Control",33,1000,f)
cv2.createTrackbar("c","Control",3,100,f)
while True:
    strel = cv2.getStructuringElement(cv2.MORPH_CROSS,(3,3))
    blocksize = cv2.getTrackbarPos("blocksize","Control")
    c = cv2.getTrackbarPos("c","Control")

    if blocksize%2==0:
        blocksize += 1
    thrash = cv2.adaptiveThreshold(imgGray,255,cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV,blockSize=blocksize,C=c)
    thrash1 = cv2.adaptiveThreshold(imgGray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,blockSize=blocksize,C=c)

    cv2.imshow("mean",thrash)
    cv2.imshow("gaussian",thrash1)
    #r,thrash = cv2.threshold(imgGray,150,255,cv2.THRESH_BINARY_INV)
    key = cv2.waitKey(1000)
    if key == 32 or iter == -1:
         break


edges = cv2.Canny(thrash,100,200)
cv2.imshow('sharpen',sharpen)
cv2.imshow('edges',edges)
cv2.imshow('grey ',imgGray)
cv2.imshow('thrash ',thrash)
cv2.waitKey(0)
circles = cv2.HoughCircles(imgGray,cv2.HOUGH_GRADIENT,1,60,param1=240,param2=50,minRadius=0,maxRadius=0)
contours,_ = cv2.findContours(thrash,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
putlabel(circles,a,contours)

Those are what I have tried, I have also tried morphological operation such as dilation, erosion, opening and closing too but I am still unable to acquire the result.

Below is my best result but the noise is too severe and the remote controller didn't get fully outlined.
enter image description here

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

洒一地阳光 2025-02-01 04:36:29

我认为简单的图像处理无法隔离具有与背景相同颜色的对象。因此,我们必须切换到深度/机器学习。这个想法是使用u-2-net 删除图像的背景我们的前景中所有对象的面膜,然后在白色上hsv颜色阈值以隔离对象。

后的结果掩码,

这是通过U-2-NET运行它以删除背景位并隔离对象

现在我们可以使用传统的图像处理,因为我们可以区分前景和背景。接下来,我们的HSV颜色阈值具有较低/上颜色范围,以隔离白色,从而插入该面罩。您可以使用

现在,我们只是执行一些形态操作,以清理任何噪音,查找轮廓并按最大的轮廓区域排序。最大轮廓将是我们所需的对象的假设。 这是结果

代码,我很想知道如何!

import cv2
import numpy as np

# Load image + mask, grayscale, Gaussian blur, Otsu's threshold
image = cv2.imread("1.jpg") # This is the original image
original = image.copy()
mask = cv2.imread("1.png") # This is the mask generated from U-2-Net
gray = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
bg_removed = cv2.bitwise_and(image, image, mask=thresh)

# HSV color thresholding
hsv = cv2.cvtColor(bg_removed, cv2.COLOR_BGR2HSV)
lower = np.array([0, 0, 0])
upper = np.array([179, 33, 255])
hsv_mask = cv2.inRange(hsv, lower, upper)
isolated = cv2.bitwise_and(bg_removed, bg_removed, mask=hsv_mask)
isolated = cv2.cvtColor(isolated, cv2.COLOR_BGR2GRAY)
isolated = cv2.threshold(isolated, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]

# Morph operations to remove small artifacts and noise
open_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3))
opening = cv2.morphologyEx(isolated, cv2.MORPH_OPEN, open_kernel, iterations=1)
close_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
close = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, close_kernel, iterations=1)

# Find contours and sort by largest contour area
cnts = cv2.findContours(close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
for c in cnts:
    cv2.drawContours(original, [c], -1, (36,255,12), 3)
    break

cv2.imshow("bg_removed", bg_removed)
cv2.imshow("hsv_mask", hsv_mask)
cv2.imshow('isolated', isolated)
cv2.imshow('original', original)
cv2.waitKey()

如果有人使用简单的图像处理而不是深度/机器学习,那么

I don't think simple image-processing will be able to isolate an object with the same color as the background. Therefore we have to switch to deep/machine learning. The idea is to remove the background of the image using U-2-Net which will give us a mask of all objects in the foreground then HSV color threshold on white to isolate the object.

Here's the result mask after running it through U-2-Net to remove the background

Bitwise-and to isolate objects

Now we can use traditional image-processing since we can distinguish between the foreground and background. Next we HSV color threshold with a lower/upper color range to isolate white which results in this mask. You can use a HSV color thresholder script to determine the lower/upper ranges.

Now we simply perform a bit of morphological operations to clean up any noise, find contours, and sort by largest contour area. The assumption that the largest contour will be our desired object. Here's the result

Code

import cv2
import numpy as np

# Load image + mask, grayscale, Gaussian blur, Otsu's threshold
image = cv2.imread("1.jpg") # This is the original image
original = image.copy()
mask = cv2.imread("1.png") # This is the mask generated from U-2-Net
gray = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
bg_removed = cv2.bitwise_and(image, image, mask=thresh)

# HSV color thresholding
hsv = cv2.cvtColor(bg_removed, cv2.COLOR_BGR2HSV)
lower = np.array([0, 0, 0])
upper = np.array([179, 33, 255])
hsv_mask = cv2.inRange(hsv, lower, upper)
isolated = cv2.bitwise_and(bg_removed, bg_removed, mask=hsv_mask)
isolated = cv2.cvtColor(isolated, cv2.COLOR_BGR2GRAY)
isolated = cv2.threshold(isolated, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]

# Morph operations to remove small artifacts and noise
open_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3))
opening = cv2.morphologyEx(isolated, cv2.MORPH_OPEN, open_kernel, iterations=1)
close_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
close = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, close_kernel, iterations=1)

# Find contours and sort by largest contour area
cnts = cv2.findContours(close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
for c in cnts:
    cv2.drawContours(original, [c], -1, (36,255,12), 3)
    break

cv2.imshow("bg_removed", bg_removed)
cv2.imshow("hsv_mask", hsv_mask)
cv2.imshow('isolated', isolated)
cv2.imshow('original', original)
cv2.waitKey()

If anyone has an approach using simple image processing instead of deep/machine learning, I would love to know how!

A君 2025-02-01 04:36:29

我想到了一种纯粹的图像处理方法。但是结果不如@nathancy

理论

TLDR所描绘的结果准确。我使用的是高斯(Dog)的差异,这是一个2级边缘检测器。

  • 获取灰度图像。
  • 对其进行两个不同的模糊操作。
  • 减去模糊的图像

模糊操作通常充当高频的抑制剂。通过减去两个不同模糊操作的结果,我们获得了一个带通滤波器。我想从“从另一个中减去一个模糊的图像,保存在两个模糊图像中保存的频率范围之间的空间信息”,

我写了一个简单的函数,返回两个模糊图像的差异:

def dog(img, k1, s1, k2, s2):
    b1 = cv2.GaussianBlur(img,(k1, k1), s1)
    b2 = cv2.GaussianBlur(img,(k2, k2), s2)
    return b1 - b2

方法

  • 获得GRAYSCALE IMAGE
  • 表演高斯表演高斯 模糊
  • 减去模糊图像
  • 应用OTSU阈值,
  • 具有不同内核大小和sigma值的
  • 根据其范围

注意:范围是轮廓的特性,这是<的范围,这是<范围的特性,是<强>轮廓面积与其相应的边界矩形区域从此处获取

代码&amp;结果

img = cv2.imread('path_to_image', cv2.IMREAD_UNCHANGED)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# Function to perform Difference of Gaussians
def difference_of_Gaussians(img, k1, s1, k2, s2):
    b1 = cv2.GaussianBlur(img,(k1, k1), s1)
    b2 = cv2.GaussianBlur(img,(k2, k2), s2)
    return b1 - b2

DoG_img = difference_of_Gaussians(gray, 7, 7, 17, 13)

如您所见,它可以用作边缘检测器。您可以更改内核大小( k1,k2 )和sigma值( s1,s2

# Applying Otsu Threshold and finding contours
th = cv2.threshold(DoG_img ,127,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)[1]
contours, hierarchy = cv2.findContours(th, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

# Create copy of original image
img1 = img.copy()

# for each contour above certain area and extent, draw minimum bounding box  
for c in contours:
    area = cv2.contourArea(c)
    if area > 1500:
        x,y,w,h = cv2.boundingRect(c)
        extent = int(area)/(w*h)                
        if extent > 0.6:
            rect = cv2.minAreaRect(c)
            box = cv2.boxPoints(rect)
            box = np.int0(box)
            cv2.drawContours(img1,[box],0,(0,255,0),4)

”

您可以看到,结果不是完美的。在边缘检测过程(高斯差异)期间,还捕获了物体的阴影。您可以尝试更改参数以检查结果是否会变得更好。

I have thought of a pure image processing approach. But the results are not as accurate as the one depicted by @nathancy

Theory

TLDR; I am using Difference of Gaussians (DoG) which is a 2-stage edge detector.

  • Obtain the grayscale image.
  • Perform two different blurring operations on it.
  • Subtract the blurred images

Blurring operation generally acts as a suppressor of high frequencies. By subtracting the result of two different blurring operations we get a band-pass filter. I would like to quote from this blog "Subtracting one blurred image from the other preserves spatial information that lies between the range of frequencies that are preserved in the two blurred images"

I wrote a simple function that returns the difference of two blurred images:

def dog(img, k1, s1, k2, s2):
    b1 = cv2.GaussianBlur(img,(k1, k1), s1)
    b2 = cv2.GaussianBlur(img,(k2, k2), s2)
    return b1 - b2

Approach

  • Obtain grayscale image
  • Perform Gaussian blur with different kernel sizes and sigma values
  • Subtract the blurred images
  • Apply Otsu threshold
  • Find contours of sufficiently large area
  • Select contours based on their extent

Note: Extent is a property of a contour which is the ration of the contour area to its corresponding bounding rectangle area. Taken from here

Code & Results

img = cv2.imread('path_to_image', cv2.IMREAD_UNCHANGED)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# Function to perform Difference of Gaussians
def difference_of_Gaussians(img, k1, s1, k2, s2):
    b1 = cv2.GaussianBlur(img,(k1, k1), s1)
    b2 = cv2.GaussianBlur(img,(k2, k2), s2)
    return b1 - b2

DoG_img = difference_of_Gaussians(gray, 7, 7, 17, 13)

enter image description here

As you can see, it functions as an edge detector. You can vary the kernel sizes (k1, k2) and sigma values (s1, s2)

# Applying Otsu Threshold and finding contours
th = cv2.threshold(DoG_img ,127,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)[1]
contours, hierarchy = cv2.findContours(th, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

# Create copy of original image
img1 = img.copy()

# for each contour above certain area and extent, draw minimum bounding box  
for c in contours:
    area = cv2.contourArea(c)
    if area > 1500:
        x,y,w,h = cv2.boundingRect(c)
        extent = int(area)/(w*h)                
        if extent > 0.6:
            rect = cv2.minAreaRect(c)
            box = cv2.boxPoints(rect)
            box = np.int0(box)
            cv2.drawContours(img1,[box],0,(0,255,0),4)

enter image description here

As you can see, the result is not perfect. The shadows of the objects are also captured during the edge detection process (Difference of Gaussians). You can try varying the parameters to check if the result gets better.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文