RandomForestRegressor导致KeyError:' Squared_error'
我试图预测带有随机森林的卡利住房数据集中的房价。我不明白为什么我会得到keyError:'squared_error'
在此简单代码中:
from sklearn.datasets import fetch_california_housing
import sklearn.ensemble
housing = fetch_california_housing()
rfr = sklearn.ensemble.RandomForestRegressor(n_estimators=100,
max_depth=int(25),
max_features="auto",
n_jobs=-1,
oob_score = True,
min_samples_leaf=20,
criterion = 'squared_error')
rfr.fit(housing.data, housing.target)
错误:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/kratz/anaconda3/lib/python3.8/site-packages/sklearn/ensemble/_forest.py", line 387, in fit
trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose,
File "/home/kratz/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 1054, in __call__
self.retrieve()
File "/home/kratz/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 933, in retrieve
self._output.extend(job.get(timeout=self.timeout))
File "/home/kratz/anaconda3/lib/python3.8/multiprocessing/pool.py", line 771, in get
raise self._value
File "/home/kratz/anaconda3/lib/python3.8/multiprocessing/pool.py", line 125, in worker
result = (True, func(*args, **kwds))
File "/home/kratz/anaconda3/lib/python3.8/site-packages/joblib/_parallel_backends.py", line 595, in __call__
return self.func(*args, **kwargs)
File "/home/kratz/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 262, in __call__
return [func(*args, **kwargs)
File "/home/kratz/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 262, in <listcomp>
return [func(*args, **kwargs)
File "/home/kratz/anaconda3/lib/python3.8/site-packages/sklearn/utils/fixes.py", line 222, in __call__
return self.function(*args, **kwargs)
File "/home/kratz/anaconda3/lib/python3.8/site-packages/sklearn/ensemble/_forest.py", line 169, in _parallel_build_trees
tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False)
File "/home/kratz/anaconda3/lib/python3.8/site-packages/sklearn/tree/_classes.py", line 1247, in fit
super().fit(
File "/home/kratz/anaconda3/lib/python3.8/site-packages/sklearn/tree/_classes.py", line 350, in fit
criterion = CRITERIA_REG[self.criterion](self.n_outputs_,
KeyError: 'squared_error'
I am trying to predict house prices in the Cali housing data set with a random forest. I do not understand why I get a KeyError: 'squared_error'
in this simple code:
from sklearn.datasets import fetch_california_housing
import sklearn.ensemble
housing = fetch_california_housing()
rfr = sklearn.ensemble.RandomForestRegressor(n_estimators=100,
max_depth=int(25),
max_features="auto",
n_jobs=-1,
oob_score = True,
min_samples_leaf=20,
criterion = 'squared_error')
rfr.fit(housing.data, housing.target)
Error:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/kratz/anaconda3/lib/python3.8/site-packages/sklearn/ensemble/_forest.py", line 387, in fit
trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose,
File "/home/kratz/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 1054, in __call__
self.retrieve()
File "/home/kratz/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 933, in retrieve
self._output.extend(job.get(timeout=self.timeout))
File "/home/kratz/anaconda3/lib/python3.8/multiprocessing/pool.py", line 771, in get
raise self._value
File "/home/kratz/anaconda3/lib/python3.8/multiprocessing/pool.py", line 125, in worker
result = (True, func(*args, **kwds))
File "/home/kratz/anaconda3/lib/python3.8/site-packages/joblib/_parallel_backends.py", line 595, in __call__
return self.func(*args, **kwargs)
File "/home/kratz/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 262, in __call__
return [func(*args, **kwargs)
File "/home/kratz/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 262, in <listcomp>
return [func(*args, **kwargs)
File "/home/kratz/anaconda3/lib/python3.8/site-packages/sklearn/utils/fixes.py", line 222, in __call__
return self.function(*args, **kwargs)
File "/home/kratz/anaconda3/lib/python3.8/site-packages/sklearn/ensemble/_forest.py", line 169, in _parallel_build_trees
tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False)
File "/home/kratz/anaconda3/lib/python3.8/site-packages/sklearn/tree/_classes.py", line 1247, in fit
super().fit(
File "/home/kratz/anaconda3/lib/python3.8/site-packages/sklearn/tree/_classes.py", line 350, in fit
criterion = CRITERIA_REG[self.criterion](self.n_outputs_,
KeyError: 'squared_error'
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
这可能是由于环境中
scikit-learn
的版本所致。根据 ='Squared_error'在V1.0中引入,因此,如果您有事先版本,则使用criterion ='MSE'
而不是。您可以使用
pip Freeze
在Env中检查库的版本;对于Scikit-Learn,您也可以使用:It's probably due to the version of
scikit-learn
in your environment. According to the docs for RandomForestRegressorcriterion = 'squared_error'
was introduced in v1.0, so if you have a prior version usecriterion='mse'
instead.You can use
pip freeze
to check for the version of your libraries in your env; for scikit-learn you can also use: