如何为此线性模型构建回归?

发布于 2025-01-24 23:02:40 字数 30 浏览 4 评论 0原文

我有以下线性模型,我想为此建立回归。

I have the following linear model, for which I want to build a regression.

????[i,t] = ????[i]+????[i]????[m,t] +????[i]????[m,t]????[t]+????[i,t]

r[i,t] and r[m,t] are the returns of financial data at time t and an equity index [i] or market[m], d[t] is a dummy variable which takes value 1 after a specific event and value 0 before the event. ???? is an error term.
the null hypothesis is H0: y[i] = 0;
a rejection would mean H1a : y[i] < 0 or H1b: y[i] > 0

I'm not sure how to implement the y in my regression.

I would really appreciate your help.
Thank you!

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

↘紸啶 2025-01-31 23:02:40

这很难在没有看到数据的情况下说,但是看起来可以作为固定效果模型表示,在这种模型中,您在r_ {m,t}d_ {t}之间有相互作用。但是,实际上没有足够的信息来确切解释如何在没有有关您的模型和数据的更多信息的情况下实施此信息。

您可以找到一个如何实现的示例在此上网站(带有R的计量经济学)一般而言,有几种方法和功能(例如plm Vesus lm,内部与第一差)。

This is difficult to say without seeing your data, but looks like this could be expressed as a fixed effects model, where you have an interaction between R_{m,t} and D_{t}. However, there isn't really enough information to explain exactly how to implement this without more information about your model and data.

You can find an example of how this is implemented on this website (Econometrics with R) in general, with several approaches and functions (e.g. plm vesus lm, within versus first-difference).

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文