如何实施Huffman编码,然后是AES-128的Python文本?
在实施了huffman在Python中编码文本后,我如何有效地加密所得的Huffman代码在AES-128中? 使用python编码
1010011010之后霍夫曼编码。
如何使用AE加密这些位?
# Node of a Huffman Tree
class Nodes:
def __init__(self, probability, symbol, left = None, right = None):
# probability of the symbol
self.probability = probability
# the symbol
self.symbol = symbol
# the left node
self.left = left
# the right node
self.right = right
# the tree direction (0 or 1)
self.code = ''
""" A supporting function in order to calculate the probabilities of symbols in specified data """
def CalculateProbability(the_data):
the_symbols = dict()
for item in the_data:
if the_symbols.get(item) == None:
the_symbols[item] = 1
else:
the_symbols[item] += 1
return the_symbols
""" A supporting function in order to print the codes of symbols by travelling a Huffman Tree """
the_codes = dict()
def CalculateCodes(node, value = ''):
# a huffman code for current node
newValue = value + str(node.code)
if(node.left):
CalculateCodes(node.left, newValue)
if(node.right):
CalculateCodes(node.right, newValue)
if(not node.left and not node.right):
the_codes[node.symbol] = newValue
return the_codes
""" A supporting function in order to get the encoded result """
def OutputEncoded(the_data, coding):
encodingOutput = []
for element in the_data:
# print(coding[element], end = '')
encodingOutput.append(coding[element])
the_string = ''.join([str(item) for item in encodingOutput])
return the_string
""" A supporting function in order to calculate the space difference between compressed and non compressed data"""
def TotalGain(the_data, coding):
# total bit space to store the data before compression
beforeCompression = len(the_data) * 8
afterCompression = 0
the_symbols = coding.keys()
for symbol in the_symbols:
the_count = the_data.count(symbol)
# calculating how many bit is required for that symbol in total
afterCompression += the_count * len(coding[symbol])
print("Space usage before compression (in bits):", beforeCompression)
print("Space usage after compression (in bits):", afterCompression)
def HuffmanEncoding(the_data):
symbolWithProbs = CalculateProbability(the_data)
the_symbols = symbolWithProbs.keys()
the_probabilities = symbolWithProbs.values()
print("symbols: ", the_symbols)
print("probabilities: ", the_probabilities)
the_nodes = []
# converting symbols and probabilities into huffman tree nodes
for symbol in the_symbols:
the_nodes.append(Nodes(symbolWithProbs.get(symbol), symbol))
while len(the_nodes) > 1:
# sorting all the nodes in ascending order based on their probability
the_nodes = sorted(the_nodes, key = lambda x: x.probability)
# for node in nodes:
# print(node.symbol, node.prob)
# picking two smallest nodes
right = the_nodes[0]
left = the_nodes[1]
left.code = 0
right.code = 1
# combining the 2 smallest nodes to create new node
newNode = Nodes(left.probability + right.probability, left.symbol + right.symbol, left, right)
the_nodes.remove(left)
the_nodes.remove(right)
the_nodes.append(newNode)
huffmanEncoding = CalculateCodes(the_nodes[0])
print("symbols with codes", huffmanEncoding)
TotalGain(the_data, huffmanEncoding)
encodedOutput = OutputEncoded(the_data,huffmanEncoding)
return encodedOutput, the_nodes[0]
def HuffmanDecoding(encodedData, huffmanTree):
treeHead = huffmanTree
decodedOutput = []
for x in encodedData:
if x == '1':
huffmanTree = huffmanTree.right
elif x == '0':
huffmanTree = huffmanTree.left
try:
if huffmanTree.left.symbol == None and huffmanTree.right.symbol == None:
pass
except AttributeError:
decodedOutput.append(huffmanTree.symbol)
huffmanTree = treeHead
string = ''.join([str(item) for item in decodedOutput])
return string
the_data = "Spiderman is Peter Parker"
print(the_data)
encoding, the_tree = HuffmanEncoding(the_data)
print("Encoded output", encoding)
print("Decoded Output", HuffmanDecoding(encoding, the_tree))
After having implemented Huffman coding for text in Python, how do I effectively encrypt the resultant Huffman codes in AES-128? Huffman Coding using Python
For example, "Spiderman is Peter Parker" becomes 0000100000001111110110101110001011011000011110010000010111011011010100000100100101010011010 after Huffman encoding.
How do I encrypt these bits using AES?
# Node of a Huffman Tree
class Nodes:
def __init__(self, probability, symbol, left = None, right = None):
# probability of the symbol
self.probability = probability
# the symbol
self.symbol = symbol
# the left node
self.left = left
# the right node
self.right = right
# the tree direction (0 or 1)
self.code = ''
""" A supporting function in order to calculate the probabilities of symbols in specified data """
def CalculateProbability(the_data):
the_symbols = dict()
for item in the_data:
if the_symbols.get(item) == None:
the_symbols[item] = 1
else:
the_symbols[item] += 1
return the_symbols
""" A supporting function in order to print the codes of symbols by travelling a Huffman Tree """
the_codes = dict()
def CalculateCodes(node, value = ''):
# a huffman code for current node
newValue = value + str(node.code)
if(node.left):
CalculateCodes(node.left, newValue)
if(node.right):
CalculateCodes(node.right, newValue)
if(not node.left and not node.right):
the_codes[node.symbol] = newValue
return the_codes
""" A supporting function in order to get the encoded result """
def OutputEncoded(the_data, coding):
encodingOutput = []
for element in the_data:
# print(coding[element], end = '')
encodingOutput.append(coding[element])
the_string = ''.join([str(item) for item in encodingOutput])
return the_string
""" A supporting function in order to calculate the space difference between compressed and non compressed data"""
def TotalGain(the_data, coding):
# total bit space to store the data before compression
beforeCompression = len(the_data) * 8
afterCompression = 0
the_symbols = coding.keys()
for symbol in the_symbols:
the_count = the_data.count(symbol)
# calculating how many bit is required for that symbol in total
afterCompression += the_count * len(coding[symbol])
print("Space usage before compression (in bits):", beforeCompression)
print("Space usage after compression (in bits):", afterCompression)
def HuffmanEncoding(the_data):
symbolWithProbs = CalculateProbability(the_data)
the_symbols = symbolWithProbs.keys()
the_probabilities = symbolWithProbs.values()
print("symbols: ", the_symbols)
print("probabilities: ", the_probabilities)
the_nodes = []
# converting symbols and probabilities into huffman tree nodes
for symbol in the_symbols:
the_nodes.append(Nodes(symbolWithProbs.get(symbol), symbol))
while len(the_nodes) > 1:
# sorting all the nodes in ascending order based on their probability
the_nodes = sorted(the_nodes, key = lambda x: x.probability)
# for node in nodes:
# print(node.symbol, node.prob)
# picking two smallest nodes
right = the_nodes[0]
left = the_nodes[1]
left.code = 0
right.code = 1
# combining the 2 smallest nodes to create new node
newNode = Nodes(left.probability + right.probability, left.symbol + right.symbol, left, right)
the_nodes.remove(left)
the_nodes.remove(right)
the_nodes.append(newNode)
huffmanEncoding = CalculateCodes(the_nodes[0])
print("symbols with codes", huffmanEncoding)
TotalGain(the_data, huffmanEncoding)
encodedOutput = OutputEncoded(the_data,huffmanEncoding)
return encodedOutput, the_nodes[0]
def HuffmanDecoding(encodedData, huffmanTree):
treeHead = huffmanTree
decodedOutput = []
for x in encodedData:
if x == '1':
huffmanTree = huffmanTree.right
elif x == '0':
huffmanTree = huffmanTree.left
try:
if huffmanTree.left.symbol == None and huffmanTree.right.symbol == None:
pass
except AttributeError:
decodedOutput.append(huffmanTree.symbol)
huffmanTree = treeHead
string = ''.join([str(item) for item in decodedOutput])
return string
the_data = "Spiderman is Peter Parker"
print(the_data)
encoding, the_tree = HuffmanEncoding(the_data)
print("Encoded output", encoding)
print("Decoded Output", HuffmanDecoding(encoding, the_tree))
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
许多软件包都支持AES加密,其中之一是 pycryptodome 。
例如,使用EAX模式加密:
Many packages support AES encryption, one of which is PyCryptodome.
For example, to encrypt using EAX mode: