随着迭代次数的数量
调整超参数时,我会看到RMSE随着迭代次数的数量而变大。这与我期望的完全相反。难道数据对于顺序学习树来说太吵了吗?我的数据集很大,而且数量很小,而且数量很大,因此我认为发布代表性样本不会有帮助/可能。我只是想知道我们在图中看到的迭代#的趋势可能是什么?
When tuning hyperparameters I see that the RMSE gets larger with a greater number of iterations. This is the exact opposite of what I was expecting. Could it be that the data is too noisy for sequential learning trees? My data set is huge with a lot of very small and some very large numbers so I don't think posting a representative sample would be helpful/possible. I am just wondering what is the likely cause for the trend with iterations # that we see in the plots?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
Y轴随高度降低。该图是预期的。
Y-axis decreases with height. The graph is as expected.