训练有素的LSTM模型可以预测真实数据

发布于 2025-01-24 06:34:01 字数 2875 浏览 0 评论 0原文

我正在开发一个LSTM模型来预测库存运动。看来该模型经过了良好的训练,其val_loss和损失低。但是预测真实数据并不能很好地工作。

以下是培训的产出:

Epoch 75: val_loss improved from 0.03284 to 0.03071, saving model to /data/nn/python/us/stock/idx1/model/dow_257.h5
572/572 - 50s - loss: 0.0379 - accuracy: 0.9485 - val_loss: 0.0307 - val_accuracy: 0.9593 - 50s/epoch - 88ms/step
Epoch 76/100

Epoch 85: val_loss did not improve from 0.04519
580/580 - 47s - loss: 0.0546 - accuracy: 0.9173 - val_loss: 0.0500 - val_accuracy: 0.9284 - 47s/epoch - 82ms/step
Epoch 86/100

Epoch 76: val_loss did not improve from 0.03071
572/572 - 46s - loss: 0.0562 - accuracy: 0.9246 - val_loss: 0.0309 - val_accuracy: 0.9580 - 46s/epoch - 81ms/step
Epoch 77/100

Epoch 86: val_loss improved from 0.04519 to 0.04331, saving model to /data/nn/python/us/stock/idx1/model/dow_260.h5
580/580 - 47s - loss: 0.0563 - accuracy: 0.9192 - val_loss: 0.0433 - val_accuracy: 0.9383 - 47s/epoch - 81ms/step
Epoch 87/100

Epoch 77: val_loss did not improve from 0.03071
572/572 - 46s - loss: 0.0380 - accuracy: 0.9468 - val_loss: 0.0324 - val_accuracy: 0.9558 - 46s/epoch - 81ms/step
Epoch 78/100

Epoch 87: val_loss did not improve from 0.04331
580/580 - 47s - loss: 0.0566 - accuracy: 0.9194 - val_loss: 0.0440 - val_accuracy: 0.9348 - 47s/epoch - 81ms/step
Epoch 88/100

Epoch 78: val_loss improved from 0.03071 to 0.03060, saving model to /data/nn/python/us/stock/idx1/model/dow_257.h5
572/572 - 46s - loss: 0.0356 - accuracy: 0.9496 - val_loss: 0.0306 - val_accuracy: 0.9580 - 46s/epoch - 81ms/step
Epoch 79/100

Epoch 88: val_loss did not improve from 0.04331
580/580 - 47s - loss: 0.0536 - accuracy: 0.9221 - val_loss: 0.0446 - val_accuracy: 0.9340 - 47s/epoch - 81ms/step
Epoch 89/100

Epoch 79: val_loss did not improve from 0.03060
572/572 - 46s - loss: 0.0379 - accuracy: 0.9456 - val_loss: 0.0395 - val_accuracy: 0.9501 - 46s/epoch - 81ms/step
Epoch 80/100

Epoch 89: val_loss did not improve from 0.04331
580/580 - 47s - loss: 0.0528 - accuracy: 0.9264 - val_loss: 0.0444 - val_accuracy: 0.9391 - 47s/epoch - 81ms/step
Epoch 90/100

Epoch 80: val_loss improved from 0.03060 to 0.03018, saving model to /data/nn/python/us/stock/idx1/model/dow_257.h5
572/572 - 46s - loss: 0.0358 - accuracy: 0.9504 - val_loss: 0.0302 - val_accuracy: 0.9580 - 46s/epoch - 81ms/step
Epoch 81/100

Epoch 90: val_loss did not improve from 0.04331
580/580 - 47s - loss: 0.0732 - accuracy: 0.8934 - val_loss: 0.0714 - val_accuracy: 0.9007 - 47s/epoch - 81ms/step
Epoch 91/100

Epoch 81: val_loss improved from 0.03018 to 0.03003, saving model to /data/nn/python/us/stock/idx1/model/dow_257.h5
572/572 - 46s - loss: 0.0347 - accuracy: 0.9515 - val_loss: 0.0300 - val_accuracy: 0.9584 - 46s/epoch - 80ms/step

我有10,000多个培训场合涵盖了过去五年的美国股票市场。我还有3000个用于验证和3000次测试。 VAL_LOSS随着时间的流逝而降低,准确性同时提高。但是当我进行测试时,准确性实际上低于50%。

有人有相同的经验并可以分享一些见解吗?

谢谢。

I am developing a LSTM model to predict stock movement. It seems that the model is well trained, with low val_loss and loss. But it doesn't work well to predict real data.

The following is the output of the training:

Epoch 75: val_loss improved from 0.03284 to 0.03071, saving model to /data/nn/python/us/stock/idx1/model/dow_257.h5
572/572 - 50s - loss: 0.0379 - accuracy: 0.9485 - val_loss: 0.0307 - val_accuracy: 0.9593 - 50s/epoch - 88ms/step
Epoch 76/100

Epoch 85: val_loss did not improve from 0.04519
580/580 - 47s - loss: 0.0546 - accuracy: 0.9173 - val_loss: 0.0500 - val_accuracy: 0.9284 - 47s/epoch - 82ms/step
Epoch 86/100

Epoch 76: val_loss did not improve from 0.03071
572/572 - 46s - loss: 0.0562 - accuracy: 0.9246 - val_loss: 0.0309 - val_accuracy: 0.9580 - 46s/epoch - 81ms/step
Epoch 77/100

Epoch 86: val_loss improved from 0.04519 to 0.04331, saving model to /data/nn/python/us/stock/idx1/model/dow_260.h5
580/580 - 47s - loss: 0.0563 - accuracy: 0.9192 - val_loss: 0.0433 - val_accuracy: 0.9383 - 47s/epoch - 81ms/step
Epoch 87/100

Epoch 77: val_loss did not improve from 0.03071
572/572 - 46s - loss: 0.0380 - accuracy: 0.9468 - val_loss: 0.0324 - val_accuracy: 0.9558 - 46s/epoch - 81ms/step
Epoch 78/100

Epoch 87: val_loss did not improve from 0.04331
580/580 - 47s - loss: 0.0566 - accuracy: 0.9194 - val_loss: 0.0440 - val_accuracy: 0.9348 - 47s/epoch - 81ms/step
Epoch 88/100

Epoch 78: val_loss improved from 0.03071 to 0.03060, saving model to /data/nn/python/us/stock/idx1/model/dow_257.h5
572/572 - 46s - loss: 0.0356 - accuracy: 0.9496 - val_loss: 0.0306 - val_accuracy: 0.9580 - 46s/epoch - 81ms/step
Epoch 79/100

Epoch 88: val_loss did not improve from 0.04331
580/580 - 47s - loss: 0.0536 - accuracy: 0.9221 - val_loss: 0.0446 - val_accuracy: 0.9340 - 47s/epoch - 81ms/step
Epoch 89/100

Epoch 79: val_loss did not improve from 0.03060
572/572 - 46s - loss: 0.0379 - accuracy: 0.9456 - val_loss: 0.0395 - val_accuracy: 0.9501 - 46s/epoch - 81ms/step
Epoch 80/100

Epoch 89: val_loss did not improve from 0.04331
580/580 - 47s - loss: 0.0528 - accuracy: 0.9264 - val_loss: 0.0444 - val_accuracy: 0.9391 - 47s/epoch - 81ms/step
Epoch 90/100

Epoch 80: val_loss improved from 0.03060 to 0.03018, saving model to /data/nn/python/us/stock/idx1/model/dow_257.h5
572/572 - 46s - loss: 0.0358 - accuracy: 0.9504 - val_loss: 0.0302 - val_accuracy: 0.9580 - 46s/epoch - 81ms/step
Epoch 81/100

Epoch 90: val_loss did not improve from 0.04331
580/580 - 47s - loss: 0.0732 - accuracy: 0.8934 - val_loss: 0.0714 - val_accuracy: 0.9007 - 47s/epoch - 81ms/step
Epoch 91/100

Epoch 81: val_loss improved from 0.03018 to 0.03003, saving model to /data/nn/python/us/stock/idx1/model/dow_257.h5
572/572 - 46s - loss: 0.0347 - accuracy: 0.9515 - val_loss: 0.0300 - val_accuracy: 0.9584 - 46s/epoch - 80ms/step

I have over 10,000 instances in training set covering the past five year period of US stock market. I have another 3000 for validation and 3000 for testing. The val_loss decreases over time and accuracy increases at the same time. But when I did testing, the accuracy is actually below 50%.

Does anyone have the same experience and can share some insights?

Thanks.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文