LSTM问题 - 无法将符号张量(LSTM_9/Strided_slice:0)转换为numpy数组
我有一个3D张量,尺寸为(行,n_hour lags,n_features) 所有值均为np.float64或np.int64 LSTM架构很简单:
我已经查找了一些最终解决问题的问题,但没有一个有效。使用以下系统和软件包版本:
Windows 10 TensorFlow 2.3.0 Numpy 1.18.5 python 3.8.13`
model = Sequential()
model.add(LSTM(n_features, input_shape=(train_X.shape[1], train_X.shape[2])))
model.add(Dense(1))
model.compile(loss='mae', optimizer='adam')
history = model.fit(train_X, train_y, epochs=50, batch_size=6, ` validation_data(test_X,test_y),verbose=2, shuffle=False,validation_split=0.2)
但是
在尝试执行此代码时,我会收到以下错误:
---------------------------------------------------------------------------
NotImplementedError Traceback (most recent call last)
<ipython-input-1951-b640ca9f324a> in <module>
1 # design network
2 model = Sequential()
----> 3 model.add(LSTM(n_features, input_shape=(train_X.shape[1], train_X.shape[2])))
4 model.add(Dense(1))
5 model.compile(loss='mae', optimizer='adam')
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\training\tracking\base.py in _method_wrapper(self, *args, **kwargs)
455 self._self_setattr_tracking = False # pylint: disable=protected-access
456 try:
--> 457 result = method(self, *args, **kwargs)
458 finally:
459 self._self_setattr_tracking = previous_value # pylint: disable=protected-access
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\engine\sequential.py in add(self, layer)
204 # and create the node connecting the current layer
205 # to the input layer we just created.
--> 206 layer(x)
207 set_inputs = True
208
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\layers\recurrent.py in __call__(self, inputs, initial_state, constants, **kwargs)
661
662 if initial_state is None and constants is None:
--> 663 return super(RNN, self).__call__(inputs, **kwargs)
664
665 # If any of `initial_state` or `constants` are specified and are Keras
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\engine\base_layer.py in __call__(self, *args, **kwargs)
923 # >> model = tf.keras.Model(inputs, outputs)
924 if _in_functional_construction_mode(self, inputs, args, kwargs, input_list):
--> 925 return self._functional_construction_call(inputs, args, kwargs,
926 input_list)
927
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\engine\base_layer.py in _functional_construction_call(self, inputs, args, kwargs, input_list)
1115 try:
1116 with ops.enable_auto_cast_variables(self._compute_dtype_object):
-> 1117 outputs = call_fn(cast_inputs, *args, **kwargs)
1118
1119 except errors.OperatorNotAllowedInGraphError as e:
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\layers\recurrent_v2.py in call(self, inputs, mask, training, initial_state)
1106
1107 # LSTM does not support constants. Ignore it during process.
-> 1108 inputs, initial_state, _ = self._process_inputs(inputs, initial_state, None)
1109
1110 if isinstance(mask, list):
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\layers\recurrent.py in _process_inputs(self, inputs, initial_state, constants)
860 initial_state = self.states
861 elif initial_state is None:
--> 862 initial_state = self.get_initial_state(inputs)
863
864 if len(initial_state) != len(self.states):
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\layers\recurrent.py in get_initial_state(self, inputs)
643 dtype = inputs.dtype
644 if get_initial_state_fn:
--> 645 init_state = get_initial_state_fn(
646 inputs=None, batch_size=batch_size, dtype=dtype)
647 else:
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\layers\recurrent.py in get_initial_state(self, inputs, batch_size, dtype)
2521
2522 def get_initial_state(self, inputs=None, batch_size=None, dtype=None):
-> 2523 return list(_generate_zero_filled_state_for_cell(
2524 self, inputs, batch_size, dtype))
2525
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\layers\recurrent.py in _generate_zero_filled_state_for_cell(cell, inputs, batch_size, dtype)
2966 batch_size = array_ops.shape(inputs)[0]
2967 dtype = inputs.dtype
-> 2968 return _generate_zero_filled_state(batch_size, cell.state_size, dtype)
2969
2970
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\layers\recurrent.py in _generate_zero_filled_state(batch_size_tensor, state_size, dtype)
2982
2983 if nest.is_sequence(state_size):
-> 2984 return nest.map_structure(create_zeros, state_size)
2985 else:
2986 return create_zeros(state_size)
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\util\nest.py in map_structure(func, *structure, **kwargs)
633
634 return pack_sequence_as(
--> 635 structure[0], [func(*x) for x in entries],
636 expand_composites=expand_composites)
637
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\util\nest.py in <listcomp>(.0)
633
634 return pack_sequence_as(
--> 635 structure[0], [func(*x) for x in entries],
636 expand_composites=expand_composites)
637
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\layers\recurrent.py in create_zeros(unnested_state_size)
2979 flat_dims = tensor_shape.as_shape(unnested_state_size).as_list()
2980 init_state_size = [batch_size_tensor] + flat_dims
-> 2981 return array_ops.zeros(init_state_size, dtype=dtype)
2982
2983 if nest.is_sequence(state_size):
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\util\dispatch.py in wrapper(*args, **kwargs)
199 """Call target, and fall back on dispatchers if there is a TypeError."""
200 try:
--> 201 return target(*args, **kwargs)
202 except (TypeError, ValueError):
203 # Note: convert_to_eager_tensor currently raises a ValueError, not a
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\ops\array_ops.py in wrapped(*args, **kwargs)
2745
2746 def wrapped(*args, **kwargs):
-> 2747 tensor = fun(*args, **kwargs)
2748 tensor._is_zeros_tensor = True
2749 return tensor
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\ops\array_ops.py in zeros(shape, dtype, name)
2792 # Create a constant if it won't be very big. Otherwise create a fill
2793 # op to prevent serialized GraphDefs from becoming too large.
-> 2794 output = _constant_if_small(zero, shape, dtype, name)
2795 if output is not None:
2796 return output
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\ops\array_ops.py in _constant_if_small(value, shape, dtype, name)
2730 def _constant_if_small(value, shape, dtype, name):
2731 try:
-> 2732 if np.prod(shape) < 1000:
2733 return constant(value, shape=shape, dtype=dtype, name=name)
2734 except TypeError:
<__array_function__ internals> in prod(*args, **kwargs)
~\anaconda3\envs\gpu\lib\site-packages\numpy\core\fromnumeric.py in prod(a, axis, dtype, out, keepdims, initial, where)
3049 -------
3050 number_of_dimensions : int
-> 3051 The number of dimensions in `a`. Scalars are zero-dimensional.
3052
3053 See Also
~\anaconda3\envs\gpu\lib\site-packages\numpy\core\fromnumeric.py in _wrapreduction(obj, ufunc, method, axis, dtype, out, **kwargs)
84 # support a dtype.
85 if dtype is not None:
---> 86 return reduction(axis=axis, dtype=dtype, out=out, **passkwargs)
87 else:
88 return reduction(axis=axis, out=out, **passkwargs)
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\framework\ops.py in __array__(self)
843
844 def __array__(self):
--> 845 raise NotImplementedError(
846 "Cannot convert a symbolic Tensor ({}) to a numpy array."
847 " This error may indicate that you're trying to pass a Tensor to"
NotImplementedError: Cannot convert a symbolic Tensor (lstm_9/strided_slice:0) to a numpy
array. This error may indicate that you're trying to pass a Tensor to a NumPy call, which is
not supported
I have a 3D tensor where the dimensions are (rows, n_hour lags, n_features)
All values are either np.float64 or np.int64
The LSTM architecture is simple:
I already looked up some eventual problem solving threads but none was effective. Following system and package versions are used:
Windows 10
tensorflow 2.3.0
numpy 1.18.5
python 3.8.13
model = Sequential()
model.add(LSTM(n_features, input_shape=(train_X.shape[1], train_X.shape[2])))
model.add(Dense(1))
model.compile(loss='mae', optimizer='adam')
history = model.fit(train_X, train_y, epochs=50, batch_size=6, ` validation_data(test_X,test_y),verbose=2, shuffle=False,validation_split=0.2)
`
Yet when trying to execute this code, i receive following error:
---------------------------------------------------------------------------
NotImplementedError Traceback (most recent call last)
<ipython-input-1951-b640ca9f324a> in <module>
1 # design network
2 model = Sequential()
----> 3 model.add(LSTM(n_features, input_shape=(train_X.shape[1], train_X.shape[2])))
4 model.add(Dense(1))
5 model.compile(loss='mae', optimizer='adam')
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\training\tracking\base.py in _method_wrapper(self, *args, **kwargs)
455 self._self_setattr_tracking = False # pylint: disable=protected-access
456 try:
--> 457 result = method(self, *args, **kwargs)
458 finally:
459 self._self_setattr_tracking = previous_value # pylint: disable=protected-access
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\engine\sequential.py in add(self, layer)
204 # and create the node connecting the current layer
205 # to the input layer we just created.
--> 206 layer(x)
207 set_inputs = True
208
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\layers\recurrent.py in __call__(self, inputs, initial_state, constants, **kwargs)
661
662 if initial_state is None and constants is None:
--> 663 return super(RNN, self).__call__(inputs, **kwargs)
664
665 # If any of `initial_state` or `constants` are specified and are Keras
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\engine\base_layer.py in __call__(self, *args, **kwargs)
923 # >> model = tf.keras.Model(inputs, outputs)
924 if _in_functional_construction_mode(self, inputs, args, kwargs, input_list):
--> 925 return self._functional_construction_call(inputs, args, kwargs,
926 input_list)
927
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\engine\base_layer.py in _functional_construction_call(self, inputs, args, kwargs, input_list)
1115 try:
1116 with ops.enable_auto_cast_variables(self._compute_dtype_object):
-> 1117 outputs = call_fn(cast_inputs, *args, **kwargs)
1118
1119 except errors.OperatorNotAllowedInGraphError as e:
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\layers\recurrent_v2.py in call(self, inputs, mask, training, initial_state)
1106
1107 # LSTM does not support constants. Ignore it during process.
-> 1108 inputs, initial_state, _ = self._process_inputs(inputs, initial_state, None)
1109
1110 if isinstance(mask, list):
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\layers\recurrent.py in _process_inputs(self, inputs, initial_state, constants)
860 initial_state = self.states
861 elif initial_state is None:
--> 862 initial_state = self.get_initial_state(inputs)
863
864 if len(initial_state) != len(self.states):
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\layers\recurrent.py in get_initial_state(self, inputs)
643 dtype = inputs.dtype
644 if get_initial_state_fn:
--> 645 init_state = get_initial_state_fn(
646 inputs=None, batch_size=batch_size, dtype=dtype)
647 else:
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\layers\recurrent.py in get_initial_state(self, inputs, batch_size, dtype)
2521
2522 def get_initial_state(self, inputs=None, batch_size=None, dtype=None):
-> 2523 return list(_generate_zero_filled_state_for_cell(
2524 self, inputs, batch_size, dtype))
2525
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\layers\recurrent.py in _generate_zero_filled_state_for_cell(cell, inputs, batch_size, dtype)
2966 batch_size = array_ops.shape(inputs)[0]
2967 dtype = inputs.dtype
-> 2968 return _generate_zero_filled_state(batch_size, cell.state_size, dtype)
2969
2970
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\layers\recurrent.py in _generate_zero_filled_state(batch_size_tensor, state_size, dtype)
2982
2983 if nest.is_sequence(state_size):
-> 2984 return nest.map_structure(create_zeros, state_size)
2985 else:
2986 return create_zeros(state_size)
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\util\nest.py in map_structure(func, *structure, **kwargs)
633
634 return pack_sequence_as(
--> 635 structure[0], [func(*x) for x in entries],
636 expand_composites=expand_composites)
637
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\util\nest.py in <listcomp>(.0)
633
634 return pack_sequence_as(
--> 635 structure[0], [func(*x) for x in entries],
636 expand_composites=expand_composites)
637
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\layers\recurrent.py in create_zeros(unnested_state_size)
2979 flat_dims = tensor_shape.as_shape(unnested_state_size).as_list()
2980 init_state_size = [batch_size_tensor] + flat_dims
-> 2981 return array_ops.zeros(init_state_size, dtype=dtype)
2982
2983 if nest.is_sequence(state_size):
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\util\dispatch.py in wrapper(*args, **kwargs)
199 """Call target, and fall back on dispatchers if there is a TypeError."""
200 try:
--> 201 return target(*args, **kwargs)
202 except (TypeError, ValueError):
203 # Note: convert_to_eager_tensor currently raises a ValueError, not a
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\ops\array_ops.py in wrapped(*args, **kwargs)
2745
2746 def wrapped(*args, **kwargs):
-> 2747 tensor = fun(*args, **kwargs)
2748 tensor._is_zeros_tensor = True
2749 return tensor
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\ops\array_ops.py in zeros(shape, dtype, name)
2792 # Create a constant if it won't be very big. Otherwise create a fill
2793 # op to prevent serialized GraphDefs from becoming too large.
-> 2794 output = _constant_if_small(zero, shape, dtype, name)
2795 if output is not None:
2796 return output
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\ops\array_ops.py in _constant_if_small(value, shape, dtype, name)
2730 def _constant_if_small(value, shape, dtype, name):
2731 try:
-> 2732 if np.prod(shape) < 1000:
2733 return constant(value, shape=shape, dtype=dtype, name=name)
2734 except TypeError:
<__array_function__ internals> in prod(*args, **kwargs)
~\anaconda3\envs\gpu\lib\site-packages\numpy\core\fromnumeric.py in prod(a, axis, dtype, out, keepdims, initial, where)
3049 -------
3050 number_of_dimensions : int
-> 3051 The number of dimensions in `a`. Scalars are zero-dimensional.
3052
3053 See Also
~\anaconda3\envs\gpu\lib\site-packages\numpy\core\fromnumeric.py in _wrapreduction(obj, ufunc, method, axis, dtype, out, **kwargs)
84 # support a dtype.
85 if dtype is not None:
---> 86 return reduction(axis=axis, dtype=dtype, out=out, **passkwargs)
87 else:
88 return reduction(axis=axis, out=out, **passkwargs)
~\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\framework\ops.py in __array__(self)
843
844 def __array__(self):
--> 845 raise NotImplementedError(
846 "Cannot convert a symbolic Tensor ({}) to a numpy array."
847 " This error may indicate that you're trying to pass a Tensor to"
NotImplementedError: Cannot convert a symbolic Tensor (lstm_9/strided_slice:0) to a numpy
array. This error may indicate that you're trying to pass a Tensor to a NumPy call, which is
not supported
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论