是否有可以直接计算L_INF DELAUNAY三角剖分的最佳算法?
我想编写一个C ++程序,该程序使用L_INF Metric绘制平面设置的点的Delaunay三角剖分。
我想知道是否有分歧&征服算法(来自Guibas和Stolfi)和增量算法(来自Bowyer-Watson)可以应用于L_INF度量。
有很多工作证明可以在O(nlogn)中完成L_P Delaunay三角剖分,但其中许多通过计算Voronoi图来间接证明了这一点。我想直接实现一个程序计算Delaunay三角剖分,而不是来自Voronoi图。
I want to write a C++ program which draws a Delaunay triangulation of a point set in the plane using L_inf metric.
I wonder if a Divide & Conquer algorithm (from Guibas and Stolfi) and an incremental algorithm (from Bowyer-Watson) can be applied to L_inf metric.
There have been a lot of works which prove that L_p Delaunay triangulation can be done in O(nlogn), but many of them proved it indirectly by computing Voronoi diagram. I want to implement a program computing Delaunay triangulation directly, not from a Voronoi diagram.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
我是一个C ++的人,但在Python中,这可能是我的方法:
I'm much of a C++ guy but in Python this would probably be my approach:
Jonathan Shewchuk的 triangle> triangle> cgal 2d三角剖分是C ++。我自己的 tinfour 实现在java中,所以这不是您想要的,但是该项目并不完全确实有一个设置的示例应用程序和一些实现说明,可以在“
Jonathan Shewchuk's Triangle is a well regarded implementation in C and there is also the CGAL 2D Triangulation which is C++. My own Tinfour implementation is in Java, so it's not quite what you're looking for, but the project does have a set example applications and some implementation notes that may be of use at Tinfour Algorithms