NetworkX图形间与特征向量的中心性
在尝试绘制分布时,我在特征向量和中心融合中的价值方面遇到了麻烦。当前绘制时,当中心显然没有任何负值时,它显示的负值约为0.4至0.0。但是,我能够正确地绘制学度中心性。以下是目前出现的图像。
/I.sstatic.net/aacwz.png“ alt =“在此处输入图像描述”>
目前代码看起来如下,我无法弄清楚为什么这个问题持续存在:
degr_cent = nx.degree_centrality(G)
eigvec_cent = nx.eigenvector_centrality(G)
betw_cent = nx.betweenness_centrality(G)
degree_sequence = sorted((d for n,d in G.degree()), reverse=True)
fig = plt.figure("Degree of a random graph", figsize=(8, 8))
axgrid = fig.add_gridspec(5, 4)
ax = fig.add_subplot()
ax.bar(*np.unique(degree_sequence, return_counts=True))
ax.set_title("Degree histogram")
ax.set_xlabel("Degree")
ax.set_ylabel("# of Nodes")
plt.savefig('degree_distribution.png')
plt.show()
#degree centrality histogram
dc_degr_histogram = nx.degree_histogram(G)
dc_degrees = range(len(dc_degr_histogram))
dc_degr_histogram = nx.degree_histogram(G)
dc_degrees = range(len(dc_degr_histogram))
plt.figure(figsize=(12,8))
plt.loglog(dc_degrees, dc_degr_histogram,'go-')
plt.xlabel('Degree')
plt.ylabel('Frequency')
plt.savefig('degree_distribution.png')
plt.show()
eigvec_values = eigvec_cent.values()
eigvec_sequence = sorted(eigvec_values, reverse=True)
fig = plt.figure("Degree of a random graph", figsize=(8, 8))
axgrid = fig.add_gridspec(5, 4)
ax = fig.add_subplot()
ax.bar(*np.unique(eigvec_sequence, return_counts=True))
ax.set_title("Eigenvec histogram")
ax.set_xlabel("Eigenvec")
ax.set_ylabel("# of Nodes")
plt.savefig('eigvec_distribution.png')
plt.show()
betw_cent_values = betw_cent.values()
betw_cent_values = sorted(betw_cent_values)
fig = plt.figure("Degree of a random graph", figsize=(8, 8))
axgrid = fig.add_gridspec(5, 4)
ax = fig.add_subplot()
ax.bar(*np.unique(betw_cent_values, return_counts=True))
ax.set_title("betweenness")
ax.set_xlabel("betw")
ax.set_ylabel("# of Nodes")
plt.savefig('betweenness_distribution.png')
plt.show()
I am having trouble with the values coming out of eigenvector and betweenness centralities when trying to graph the distributions. Currently when graphing it shows negative values of around 0.4 to 0.0 when there clearly aren't any negative values in the centralities. However I am able to graph the degree centrality correctly. Below are images of what comes out currently.
The code looks like the following at the moment and I am unable to figure out why this problem persists:
degr_cent = nx.degree_centrality(G)
eigvec_cent = nx.eigenvector_centrality(G)
betw_cent = nx.betweenness_centrality(G)
degree_sequence = sorted((d for n,d in G.degree()), reverse=True)
fig = plt.figure("Degree of a random graph", figsize=(8, 8))
axgrid = fig.add_gridspec(5, 4)
ax = fig.add_subplot()
ax.bar(*np.unique(degree_sequence, return_counts=True))
ax.set_title("Degree histogram")
ax.set_xlabel("Degree")
ax.set_ylabel("# of Nodes")
plt.savefig('degree_distribution.png')
plt.show()
#degree centrality histogram
dc_degr_histogram = nx.degree_histogram(G)
dc_degrees = range(len(dc_degr_histogram))
dc_degr_histogram = nx.degree_histogram(G)
dc_degrees = range(len(dc_degr_histogram))
plt.figure(figsize=(12,8))
plt.loglog(dc_degrees, dc_degr_histogram,'go-')
plt.xlabel('Degree')
plt.ylabel('Frequency')
plt.savefig('degree_distribution.png')
plt.show()
eigvec_values = eigvec_cent.values()
eigvec_sequence = sorted(eigvec_values, reverse=True)
fig = plt.figure("Degree of a random graph", figsize=(8, 8))
axgrid = fig.add_gridspec(5, 4)
ax = fig.add_subplot()
ax.bar(*np.unique(eigvec_sequence, return_counts=True))
ax.set_title("Eigenvec histogram")
ax.set_xlabel("Eigenvec")
ax.set_ylabel("# of Nodes")
plt.savefig('eigvec_distribution.png')
plt.show()
betw_cent_values = betw_cent.values()
betw_cent_values = sorted(betw_cent_values)
fig = plt.figure("Degree of a random graph", figsize=(8, 8))
axgrid = fig.add_gridspec(5, 4)
ax = fig.add_subplot()
ax.bar(*np.unique(betw_cent_values, return_counts=True))
ax.set_title("betweenness")
ax.set_xlabel("betw")
ax.set_ylabel("# of Nodes")
plt.savefig('betweenness_distribution.png')
plt.show()
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论