合并geodataframes -typeError:float()参数必须是字符串或数字,而不是' point'
我有一个数据框架,其中一列具有一系列巧妙的点,另一个我有一系列多边形。
df.head()
hash number street unit \
2024459 283e04eca5c4932a SN AVENIDA DOUTOR SEVERIANO DE ALMEIDA NaN
2024460 1a92a1c3cba7941a 485 AVENIDA DOUTOR SEVERIANO DE ALMEIDA NaN
2024461 837341c45de519a3 475 AVENIDA DOUTOR SEVERIANO DE ALMEIDA NaN
city district region postcode id geometry
2024459 Jaguari NaN RS 97760-000 NaN POINT (-54.69445 -29.49421)
2024460 Jaguari NaN RS 97760-000 NaN POINT (-54.69445 -29.49421)
2024461 Jaguari NaN RS 97760-000 NaN POINT (-54.69445 -29.49421)
poly_df.head()
centroids geometry
0 POINT (-29.31067315122428 -54.64176359828149) POLYGON ((-54.64069 -29.31161, -54.64069 -29.3...
1 POINT (-29.31067315122428 -54.63961783106958) POLYGON ((-54.63854 -29.31161, -54.63854 -29.3...
2 POINT (-29.31067315122428 -54.637472063857665) POLYGON ((-54.63640 -29.31161, -54.63640 -29.3...
我正在检查点是否属于多边形,并将点对象插入第二个数据框的单元格中。但是,我会收到以下错误:
Traceback (most recent call last):
File "/tmp/ipykernel_4771/1967309101.py", line 1, in <module>
df.loc[idx, 'centroids'] = poly_mun.loc[ix, 'centroids']
File ".local/lib/python3.8/site-packages/pandas/core/indexing.py", line 692, in __setitem__
iloc._setitem_with_indexer(indexer, value, self.name)
File ".local/lib/python3.8/site-packages/pandas/core/indexing.py", line 1599, in _setitem_with_indexer
self.obj[key] = infer_fill_value(value)
File ".local/lib/python3.8/site-packages/pandas/core/dtypes/missing.py", line 516, in infer_fill_value
val = np.array(val, copy=False)
TypeError: float() argument must be a string or a number, not 'Point'
我正在使用以下命令行:
df.loc[idx, 'centroids'] = poly_df.loc[ix, 'centroids']
我也已经尝试了的。
谢谢
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您不能使用LOC创建熊猫中的新列:
从本质上讲,熊猫不知道如何解释点对象,因此使用NANS创建一个浮点列,然后无法处理点。这可能将来可以解决,但是最好明确地将列定义为对象dtype:
也就是说,根据多边形在多边形中是否在多边形中加入两个GeodataFrames,当然听起来像是
geopandas.sjoin
:You can't create a new column in pandas with a shapely geometry using loc:
Essentially, pandas doesn't know how to interpret a point object, and so creates a float column with NaNs, and then can't handle the point. This might get fixed in the future, but you're best off explicitly defining the column as object dtype:
That said, joining two GeoDataFrames with polygons and points based on whether the points are in the polygons certainly sounds like a job for
geopandas.sjoin
: