nodejs中的密钥长度无效,但是C#中的有效密钥长度
我正在将Rijndael解密从C#转换为Nodejs。
使用的键(或密码)长13个字符。使用的IV是17个字符长。
注意:下面我无法控制长度选择
是C#中的rijndael解密
using System;
using System.IO;
using System.Security.Cryptography;
using System.Text;
public class Program
{
public class CryptoProvider
{
private ICryptoTransform encryptor = (ICryptoTransform)null;
private ICryptoTransform decryptor = (ICryptoTransform)null;
private int minSaltLen = -1;
private int maxSaltLen = -1;
public CryptoProvider(string passPhrase, string initVector)
: this(passPhrase, initVector, -1, -1, -1, (string)null, (string)null, 3)
{
}
public CryptoProvider(
string passPhrase,
string initVector,
int minSaltLen,
int maxSaltLen,
int keySize,
string hashAlgorithm,
string saltValue,
int passwordIterations)
{
this.minSaltLen = 4;
this.maxSaltLen = 8;
keySize = 256;
hashAlgorithm = "SHA512";
byte[] rgbIV = Encoding.ASCII.GetBytes(initVector);
byte[] rgbSalt = new byte[0];
byte[] bytes = new PasswordDeriveBytes(passPhrase, rgbSalt, hashAlgorithm, passwordIterations).GetBytes(keySize / 8);
RijndaelManaged rijndaelManaged = new RijndaelManaged();
if (rgbIV.Length == 0)
rijndaelManaged.Mode = CipherMode.ECB;
else
rijndaelManaged.Mode = CipherMode.CBC;
this.encryptor = rijndaelManaged.CreateEncryptor(bytes, rgbIV);
this.decryptor = rijndaelManaged.CreateDecryptor(bytes, rgbIV);
}
public string Decrypt(string cipherText) {
return this.Decrypt(Convert.FromBase64String(cipherText));
}
public string Decrypt(byte[] cipherTextBytes) {
return Encoding.UTF8.GetString(this.DecryptToBytes(cipherTextBytes));
}
public byte[] DecryptToBytes(string cipherText) {
return this.DecryptToBytes(Convert.FromBase64String(cipherText));
}
public byte[] DecryptToBytes(byte[] cipherTextBytes)
{
int num = 0;
int sourceIndex = 0;
MemoryStream memoryStream = new MemoryStream(cipherTextBytes);
byte[] numArray = new byte[cipherTextBytes.Length];
lock (this)
{
CryptoStream cryptoStream = new CryptoStream((Stream)memoryStream, this.decryptor, CryptoStreamMode.Read);
num = cryptoStream.Read(numArray, 0, numArray.Length);
memoryStream.Close();
cryptoStream.Close();
}
if (this.maxSaltLen > 0 && this.maxSaltLen >= this.minSaltLen)
sourceIndex = (int)numArray[0] & 3 | (int)numArray[1] & 12 | (int)numArray[2] & 48 | (int)numArray[3] & 192;
byte[] destinationArray = new byte[num - sourceIndex];
Array.Copy((Array)numArray, sourceIndex, (Array)destinationArray, 0, num - sourceIndex);
return destinationArray;
}
}
public static void Main()
{
string Key = "";
string IV = "";
string encryptedUserData = "u7uENpFfpQhMXiTThL/ajA==";
string decryptedUserData;
CryptoProvider crypto = new CryptoProvider(Key, IV);
decryptedUserData = crypto.Decrypt(encryptedUserData.Trim());
Console.WriteLine(decryptedUserData);
}
}
,由于某种原因,我可以在 dotnetfiddle ,但在Visual Studio中不使用(因为它返回'指定的初始化矢量(IV)的错误与此算法的块大小不匹配。(参数''(参数' rgbiv')'
以下是我尝试使用 rijndael-js
const Rijndael = require("rijndael-js");
const key = "";
const iv = "";
const cipher = new Rijndael(key, "cbc");
const ciphertext = "u7uENpFfpQhMXiTThL/ajA==";
const plaintext = Buffer.from(cipher.decrypt(ciphertext, 256, iv));
返回不支持的密钥大小的错误:104位
所有错误指向同一件事:无效的键/IV长度
。接受键,而IV是有效的
?
长度 /a/54722065/12278028“> nodejs的实现,并比较了C#的结果,它们相等。
我更新了nodejs实现(请参阅)并注意到了几件事:
- 所有由此产生的密文都是相同的。我猜这是盐。
- 我尝试解密从C#生成的密文,但似乎有几个字符的左侧。
示例:c#加密字符串:
zaqv5w/gwt0sfyxzex+awg ==
,nodejs解密字符串:>& .4423
- 当我尝试解密的ciphertext时,在C#中,C#编译器返回
System.Security.Cryptography.CryptographiceXception的错误:填充物无效,无法删除。
edit> edit:
c#code:c#code(可使用.NET框架4.7.2):
using System;
using System.IO;
using System.Security.Cryptography;
using System.Text;
namespace ProgramEncrypt
{
public class CryptoProvider
{
private ICryptoTransform encryptor = (ICryptoTransform)null;
private ICryptoTransform decryptor = (ICryptoTransform)null;
private int minSaltLen = -1;
private int maxSaltLen = -1;
public CryptoProvider(string passPhrase, string initVector) : this(passPhrase, initVector, -1, -1, -1, (string)null, (string)null, 3) { }
public CryptoProvider(
string passPhrase,
string initVector,
int minSaltLen,
int maxSaltLen,
int keySize,
string hashAlgorithm,
string saltValue,
int passwordIterations)
{
this.minSaltLen = 4;
this.maxSaltLen = 8;
keySize = 256;
hashAlgorithm = "SHA512";
byte[] rgbIV = Encoding.ASCII.GetBytes(initVector);
byte[] rgbSalt = new byte[0];
byte[] bytes = new PasswordDeriveBytes(passPhrase, rgbSalt, hashAlgorithm, passwordIterations).GetBytes(keySize / 8);
RijndaelManaged rijndaelManaged = new RijndaelManaged();
if (rgbIV.Length == 0)
rijndaelManaged.Mode = CipherMode.ECB;
else
rijndaelManaged.Mode = CipherMode.CBC;
this.encryptor = rijndaelManaged.CreateEncryptor(bytes, rgbIV);
this.decryptor = rijndaelManaged.CreateDecryptor(bytes, rgbIV);
}
public string Encrypt(string plainText) => this.Encrypt(Encoding.UTF8.GetBytes(plainText));
public string Encrypt(byte[] plainTextBytes) => Convert.ToBase64String(this.EncryptToBytes(plainTextBytes));
public byte[] EncryptToBytes(string plainText) => this.EncryptToBytes(Encoding.UTF8.GetBytes(plainText));
public byte[] EncryptToBytes(byte[] plainTextBytes)
{
byte[] buffer = this.AddSalt(plainTextBytes);
MemoryStream memoryStream = new MemoryStream();
lock (this)
{
CryptoStream cryptoStream = new CryptoStream((Stream)memoryStream, this.encryptor, CryptoStreamMode.Write);
cryptoStream.Write(buffer, 0, buffer.Length);
cryptoStream.FlushFinalBlock();
byte[] array = memoryStream.ToArray();
memoryStream.Close();
cryptoStream.Close();
return array;
}
}
public string Decrypt(string cipherText) => this.Decrypt(Convert.FromBase64String(cipherText));
public string Decrypt(byte[] cipherTextBytes) => Encoding.UTF8.GetString(this.DecryptToBytes(cipherTextBytes));
public byte[] DecryptToBytes(string cipherText) => this.DecryptToBytes(Convert.FromBase64String(cipherText));
public byte[] DecryptToBytes(byte[] cipherTextBytes)
{
int num = 0;
int sourceIndex = 0;
MemoryStream memoryStream = new MemoryStream(cipherTextBytes);
byte[] numArray = new byte[cipherTextBytes.Length];
lock (this)
{
CryptoStream cryptoStream = new CryptoStream((Stream)memoryStream, this.decryptor, CryptoStreamMode.Read);
num = cryptoStream.Read(numArray, 0, numArray.Length);
memoryStream.Close();
cryptoStream.Close();
}
if (this.maxSaltLen > 0 && this.maxSaltLen >= this.minSaltLen)
sourceIndex = (int)numArray[0] & 3 | (int)numArray[1] & 12 | (int)numArray[2] & 48 | (int)numArray[3] & 192;
byte[] destinationArray = new byte[num - sourceIndex];
Array.Copy((Array)numArray, sourceIndex, (Array)destinationArray, 0, num - sourceIndex);
return destinationArray;
}
private byte[] AddSalt(byte[] plainTextBytes)
{
if (this.maxSaltLen == 0 || this.maxSaltLen < this.minSaltLen)
return plainTextBytes;
byte[] salt = this.GenerateSalt();
byte[] destinationArray = new byte[plainTextBytes.Length + salt.Length];
Array.Copy((Array)salt, (Array)destinationArray, salt.Length);
Array.Copy((Array)plainTextBytes, 0, (Array)destinationArray, salt.Length, plainTextBytes.Length);
return destinationArray;
}
private byte[] GenerateSalt()
{
int length = this.minSaltLen != this.maxSaltLen ? this.GenerateRandomNumber(this.minSaltLen, this.maxSaltLen) : this.minSaltLen;
byte[] data = new byte[length];
new RNGCryptoServiceProvider().GetNonZeroBytes(data);
data[0] = (byte)((int)data[0] & 252 | length & 3);
data[1] = (byte)((int)data[1] & 243 | length & 12);
data[2] = (byte)((int)data[2] & 207 | length & 48);
data[3] = (byte)((int)data[3] & 63 | length & 192);
return data;
}
private int GenerateRandomNumber(int minValue, int maxValue)
{
byte[] data = new byte[4];
new RNGCryptoServiceProvider().GetBytes(data);
return new Random(((int)data[0] & (int)sbyte.MaxValue) << 24 | (int)data[1] << 16 | (int)data[2] << 8 | (int)data[3]).Next(minValue, maxValue + 1);
}
public static void Main()
{
string Key = "HelL!oWoRL3ds";
string IV = "HElL!o@wOrld!#@%$";
string toEncrypt = "1234";
string encryptedData, decryptedData;
CryptoProvider crypto = new CryptoProvider(Key, IV);
encryptedData = crypto.Encrypt(toEncrypt.Trim());
decryptedData = crypto.Decrypt(encryptedData.Trim());
Console.WriteLine("ENCRYPTED: " + encryptedData);
Console.WriteLine("DECRYPTED: " + decryptedData);
}
}
}
Nodejs Code :nodejs Code (codesandbox.io):
import { deriveBytesFromPassword } from "./deriveBytesFromPassword";
const Rijndael = require("rijndael-js");
const dataToEncrypt = "1234";
const SECRET_KEY = "HelL!oWoRL3ds"; // 13 chars
const SECRET_IV = "HElL!o@wOrld!#@%$"; // 17 chars
const keySize = 256;
const hashAlgorithm = "SHA512";
// Use only the first 16 bytes of the IV
const rgbIV = Buffer.from(SECRET_IV, "ascii").slice(0, 16); // @ref https://stackoverflow.com/a/57147116/12278028
const rgbSalt = Buffer.from([]);
const derivedPasswordBytes = deriveBytesFromPassword(
SECRET_KEY,
rgbSalt,
3,
hashAlgorithm,
keySize / 8
);
const dataToEncryptInBytes = Buffer.from(dataToEncrypt, "utf8");
const cipher = new Rijndael(derivedPasswordBytes, "cbc");
const encrypted = Buffer.from(cipher.encrypt(dataToEncryptInBytes, 16, rgbIV));
console.log(encrypted.toString("base64"));
// Use this if you only have the Base64 string
// Note: The Base64 string in Line 34 is from C#
// const decrypted = Buffer.from(
// cipher.decrypt(Buffer.from("zAqv5w/gwT0sFYXZEx+Awg==", "base64"), 16, rgbIV)
// );
const decrypted = Buffer.from(cipher.decrypt(encrypted, 16, rgbIV));
console.log(decrypted.toString());
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
与C#代码兼容的基于沙盒代码的可能的NodeJS实现是:
使用
用此代码生成的密文可以用C#代码解密,反之亦然,可以用C#代码生成的密文可以用此代码解密。
说明:
rijndaelManaged.iv = rgbiv
(如MS示例中)抛出了例外。在.NET核心(测试3.0+)下,总是会抛出一个例外。这表明在.NET框架中处理IV太大,更可能是一个错误。无论如何,在nodejs代码中也只需要考虑iv的前16个字节。passwordDeriveBytes
。必须在nodejs代码中应用相同的密钥推导。在上面的代码中,使用OP链接的实现。rgbsalt
,该是在密钥推导中应用的。另一个是A second 盐,该盐是根据加密过程中的长度和内容随机生成的,被固定在纯文本上,并包含有关盐长度的信息,该信息是在解密过程中确定的。必须在nodejs代码中实现此逻辑,以使两个代码兼容。GeneratatorAndomNumber()
方法无法移植,因为其结果取决于tandom()
实现(顺便说一句,这不是csprng)。该方法应该生成一个随机整数。为此目的>使用。对于rngcryptoserviceProvider#getNonzerobytes()
应用。此nodejs函数还允许0x00字节,如果需要,可以优化。安全性:
passwordderiveBytes
被弃用和不安全。相反, 应在c#代码和 pbkdf2 在nodejs代码中。A possible NodeJS implementation based on your sandbox code that is compatible with the C# code is:
using the key derivation from the linked post.
Ciphertexts generated with this code can be decrypted with the C# code, and vice versa, ciphertexts generated with the C# code can be decrypted with this code.
Explanation:
rijndaelManaged.IV = rgbIV
(as in the MS examples) an exception is thrown. Under .NET Core (tested for 3.0+) an exception is always thrown. This indicates that processing an IV in the .NET Framework that is too large, is more likely a bug. Anyway, in the NodeJS code also only the first 16 bytes of the IV have to be considered.PasswordDeriveBytes
. The same key derivation must be applied in the NodeJS code. In the code above, the implementation linked by the OP is used.rgbSalt
, which is applied in the key derivation. The other is a second salt, which is randomly generated with respect to both length and content during encryption, is prepended to the plaintext, and contains the information about the salt length, which is determined during decryption. This logic must be implemented in the NodeJS code for both codes to be compatible.GenerateRandomNumber()
method cannot be ported because its result depends on the internal details of theRandom()
implementation (which, by the way, is not a CSPRNG). The method is supposed to generate a random integer. For this purposecrypto.randomInt()
is used. ForRNGCryptoServiceProvider#GetNonZeroBytes()
create.RandomBytes()
is applied. This NodeJS function also allows 0x00 bytes, which could be optimized if needed.Security:
PasswordDeriveBytes
is deprecated and insecure. Instead,Rfc2898DeriveBytes
should be used in the C# code and PBKDF2 in the NodeJS code.