矢量化的L1损失?

发布于 2025-01-22 19:37:58 字数 479 浏览 1 评论 0原文

我正在阅读一篇论文,它提到他们正在使用 vectorized L1损失,这在编码方面意味着什么?与常规L1损失有区别吗?从纸上,这是公式:

”“在此处输入图像描述”

查看lf,如果我要编码它,是否看起来像常规的L1损失?

import torch.nn.functional as F
loss_f = F.l1_loss(D_t, warped * D_t)
loss_f.backward()

如果是这样,为什么要特别提及 vectorized L1损失 ?我想念什么?

I was reading a paper and it mentioned that they were using vectorized L1 loss, what does that mean in terms of coding? Is there any difference from regular L1 loss? From the paper, this is the formula:

enter image description here

Looking at Lf, if I were to code it, wasn't it just look like the regular L1 loss?

import torch.nn.functional as F
loss_f = F.l1_loss(D_t, warped * D_t)
loss_f.backward()

if so, why the mention of vectorized L1 loss specifically? What did I miss?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

荒岛晴空 2025-01-29 19:37:58

矢量化是计算机/数据科学中广泛使用的概念。在这里,它指的是计算L1损耗的方法,但是结果计算仍然相同。向量数学通常用作加快代码的方法,您可以阅读更多有关它的信息在这里

Vectorization is a widely used concept in computer/data science. Here it refers to a method of computing the L1 loss, but the resulting calculation is still the same. Vector math is often used as a method to speed up code, and you can read a bit more about it here.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文