将2D图像映射到3D扫描数据
给定刀片的2D图像及其相应的3D扫描数据以STL/PLY/PCD格式。是否可以使用Python将2D图像映射到3D扫描数据?还是我们可以从2D图像中提取颜色信息并使用Python库将颜色纹理映射到3D扫描数据? 我正在研究一个项目,我想将缺陷位置定位在刀片上,我已经实现了AI算法来定位2D图像上的缺陷,但是现在我想将此信息传输到3D CAD数据。
PS。我是处理3D数据的新手,因此任何建议都会有很大的帮助。
Given a 2D image of blade and its corresponding 3D Scan data in stl/ply/pcd format. Is it possible to map the 2D image onto the 3D scan data using python? Or is it possible that we extract the color information from the 2D Image and map the color texture onto the 3D scan data using python libraries?
I am working on a project where I want to localize the defect position on the blade, I have already implemented AI algorithm to locate the defect on the 2D image, but now I want to transfer this information to the 3D CAD Data.
Ps. I am new to handling 3D data, so any suggestion would be of great help.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
如果您的3D数据意味着一个时间戳中的激光雷达设备的点云数据,则可以计算从相机到LiDAR的转换,并将LiDAR投影到图像平面并获得颜色。您可以从
如果您的3D是从立体声视觉软件中收集的,例如
colmap
。图像和3D模型之间也存在姿势关系。您可以采用与情况相同的方法1。最糟糕的条件是您的模型在图像和3D模型之间没有任何相对姿势。解决方案是计算
图像到几何
结果。图像到几何
方法将猜测图像相对于3D模型的3D姿势。如果您只想知道如何将纹理映射到3D模型。有一个答案。。
if your 3d data means a point cloud data from a lidar device in one timestamp, you can calculate the transformation from your camera to your lidar and project your lidar to the image plane and get color. And you can reference code from here
if your 3d was collected from stereo vision software, like
colmap
. There is also a pose relationship between images and the 3d model. You can make the same approach as situation 1.the worst condition is that your model doesn't have any relative pose between the images and the 3d model. The solution is to calculate an
image-to-geometry
result.image-to-geometry
methods will guess the 3d pose of the images relative to the 3d model.if you only want to know how to map a texture to a 3d model. There is an answer.