用sympy求解耦合的微分方程
我正在尝试解决以下一阶耦合微分方程的系统:
- dR/dt=k2*Y(t)-k1*R(t)*L(t)+k4*X(t)-k3*R(t)*I(t)
- dL/dt=k2*Y(t)-k1*R(t)*L(t)
- dI/dt=k4*X(t)-k3*R(t)*I(t)
- dX/dt=k1*R(t)*L(t)-k2*Y(t)
- dY/dt=k3*R(t)*I(t)-k4*X(t)
已知的初始条件是:x(0)= 0,y(0)= 0
已知的常数值为:k1 = 6500,k2 = 0.9
此方程式定义了kinetick模型,我需要求解它们以获取y(t)功能以适合我的数据并找到K3和K4值。为此,我试图用SYSPY在Symbologologologologologologologology上解决。有我的代码:
import matplotlib.pyplot as plt
import numpy as np
import sympy
from sympy.solvers.ode.systems import dsolve_system
from scipy.integrate import solve_ivp
from scipy.integrate import odeint
k1 = sympy.Symbol('k1', real=True, positive=True)
k2 = sympy.Symbol('k2', real=True, positive=True)
k3 = sympy.Symbol('k3', real=True, positive=True)
k4 = sympy.Symbol('k4', real=True, positive=True)
t = sympy.Symbol('t',real=True, positive=True)
L = sympy.Function('L')
R = sympy.Function('R')
I = sympy.Function('I')
Y = sympy.Function('Y')
X = sympy.Function('X')
f1=k2*Y(t)-k1*R(t)*L(t)+k4*X(t)-k3*R(t)*I(t)
f2=k2*Y(t)-k1*R(t)*L(t)
f3=k4*X(t)-k3*R(t)*I(t)
f4=-f2
f5=-f3
eq1=sympy.Eq(sympy.Derivative(R(t),t),f1)
eq2=sympy.Eq(sympy.Derivative(L(t),t),f2)
eq3=sympy.Eq(sympy.Derivative(I(t),t),f3)
eq4=sympy.Eq(sympy.Derivative(Y(t),t),f4)
eq5=sympy.Eq(sympy.Derivative(X(t),t),f5)
Sys=(eq1,eq2,eq3,eq4,eq5])
solsys=dsolve_system(eqs=Sys,funcs=[X(t),Y(t),R(t),L(t),I(t)], t=t, ics={Y(0):0, X(0):0})
有答案:
NotImplementedError:
The system of ODEs passed cannot be solved by dsolve_system.
我也尝试过DSOLVE,但我得到了相同的。
我是否可以使用其他求解器或某种方法可以使我获得配件的功能?我在Windows64中使用Anaconda在蜘蛛中使用Python 3.8。
谢谢你!
#update
下列的
您说的是“实验”。因此,您有数据并希望将模型适合它们,至少找到K3和K4的适当值,也许对于所有系数和初始条件(第一个测量的数据点可能不是最佳拟合的初始条件)?有关此类任务的最新尝试,请参见stackoverflow.com/questions/71722061/4。 - 卢兹·莱曼 23小时
有我的新代码:
t=[0,0.25,0.5,0.75,1.5,2.27,3.05,3.82,4.6,5.37,6.15,6.92,7.7,8.47,13.42,18.42,23.42,28.42,33.42,38.42,43.42,48.42,53.42,58.42,63.42,68.42,83.4,98.4,113.4,128.4,143.4,158.4,173.4,188.4,203.4,218.4,233.4,248.4]
yexp=[832.49,1028.01,1098.12,1190.08,1188.97,1377.09,1407.47,1529.35,1431.72,1556.66,1634.59,1679.09,1692.05,1681.89,1621.88,1716.77,1717.91,1686.7,1753.5,1722.98,1630.14,1724.16,1670.45,1677.16,1614.98,1671.16,1654.03,1661.84,1675.31,1626.76,1638.29,1614.41,1594.31,1584.73,1599.22,1587.85,1567.74,1602.69]
def derivative(S, t, k3, k4):
k1=1798931
k2=0.2629
x, y,r,l,i = S
doty = k1*r*l+k2*y
dotx = k3*r*i-k4*x
dotr = k2*y-k1*r*l+k4*x-k3*r*i
dotl = k2*y-k1*r*l
doti = k4*x-k3*r*i
return np.array([doty, dotx, dotr, dotl, doti])
def solver(XY,t,para):
return odeint(derivative, XY, t, args = para, atol=1e-8, rtol=1e-11)
def integration(XY_arr,*para):
XY0 = para[:5]
para = para[5:]
T = np.arange(len(XY_arr))
res0 = solver(XY0,T, para)
res1 = [ solver(XY0,[t,t+1],para)[-1]
for t,XY in enumerate(XY_arr[:-1]) ]
return np.concatenate([res0,res1]).flatten()
XData =yexp
YData = np.concatenate([ yexp,yexp,yexp,yexp,yexp,yexp[1:],yexp[1:],yexp[1:],yexp[1:],yexp[1:]]).flatten()
p0 =[0,0,100,10,10,1e8,0.01]
params, info = curve_fit(integration,XData,YData,p0=p0, maxfev=5000)
XY0, para = params[:5], params[5:]
print(XY0,tuple(para))
t_plot = np.linspace(0,len(t),500)
x_plot = solver(XY0, t_plot, tuple(para))
但是输出不正确,与初始条件P0相同:
[ 0. 0. 100. 10. 10.] (100000000.0, 0.01)
我知道在每个时间瞬间,功能“集成”给出了每个函数的Y值,但是我不知道如何解开它们以将curve_fitt分别制成。也许我不太了解它是如何工作的。
谢谢你!
I am trying to solve the following system of first order coupled differential equations:
- dR/dt=k2*Y(t)-k1*R(t)*L(t)+k4*X(t)-k3*R(t)*I(t)
- dL/dt=k2*Y(t)-k1*R(t)*L(t)
- dI/dt=k4*X(t)-k3*R(t)*I(t)
- dX/dt=k1*R(t)*L(t)-k2*Y(t)
- dY/dt=k3*R(t)*I(t)-k4*X(t)
The knowed initial conditions are: X(0)=0, Y(0)=0
The knowed constants values are: k1=6500, k2=0.9
This equations defines a kinetick model and I need to solve them to get the Y(t) function to fit my data and find k3 and k4 values. In order to that, I have tried to solve the system simbologically with sympy. There is my code:
import matplotlib.pyplot as plt
import numpy as np
import sympy
from sympy.solvers.ode.systems import dsolve_system
from scipy.integrate import solve_ivp
from scipy.integrate import odeint
k1 = sympy.Symbol('k1', real=True, positive=True)
k2 = sympy.Symbol('k2', real=True, positive=True)
k3 = sympy.Symbol('k3', real=True, positive=True)
k4 = sympy.Symbol('k4', real=True, positive=True)
t = sympy.Symbol('t',real=True, positive=True)
L = sympy.Function('L')
R = sympy.Function('R')
I = sympy.Function('I')
Y = sympy.Function('Y')
X = sympy.Function('X')
f1=k2*Y(t)-k1*R(t)*L(t)+k4*X(t)-k3*R(t)*I(t)
f2=k2*Y(t)-k1*R(t)*L(t)
f3=k4*X(t)-k3*R(t)*I(t)
f4=-f2
f5=-f3
eq1=sympy.Eq(sympy.Derivative(R(t),t),f1)
eq2=sympy.Eq(sympy.Derivative(L(t),t),f2)
eq3=sympy.Eq(sympy.Derivative(I(t),t),f3)
eq4=sympy.Eq(sympy.Derivative(Y(t),t),f4)
eq5=sympy.Eq(sympy.Derivative(X(t),t),f5)
Sys=(eq1,eq2,eq3,eq4,eq5])
solsys=dsolve_system(eqs=Sys,funcs=[X(t),Y(t),R(t),L(t),I(t)], t=t, ics={Y(0):0, X(0):0})
There is the answer:
NotImplementedError:
The system of ODEs passed cannot be solved by dsolve_system.
I have tried with dsolve too, but I get the same.
Is there any other solver I can use or some way of doing this that will allow me to get the function for the fitting? I'm using python 3.8 in Spider with Anaconda in windows64.
Thank you!
# Update
Following
You are saying "experiment". So you have data and want to fit the model to them, find appropriate values for k3 and k4 at least, and perhaps for all coefficients and the initial conditions (the first measured data point might not be the initial condition for the best fit)? See stackoverflow.com/questions/71722061/… for a recent attempt on such a task. –
Lutz Lehmann
23 hours
There is my new code:
t=[0,0.25,0.5,0.75,1.5,2.27,3.05,3.82,4.6,5.37,6.15,6.92,7.7,8.47,13.42,18.42,23.42,28.42,33.42,38.42,43.42,48.42,53.42,58.42,63.42,68.42,83.4,98.4,113.4,128.4,143.4,158.4,173.4,188.4,203.4,218.4,233.4,248.4]
yexp=[832.49,1028.01,1098.12,1190.08,1188.97,1377.09,1407.47,1529.35,1431.72,1556.66,1634.59,1679.09,1692.05,1681.89,1621.88,1716.77,1717.91,1686.7,1753.5,1722.98,1630.14,1724.16,1670.45,1677.16,1614.98,1671.16,1654.03,1661.84,1675.31,1626.76,1638.29,1614.41,1594.31,1584.73,1599.22,1587.85,1567.74,1602.69]
def derivative(S, t, k3, k4):
k1=1798931
k2=0.2629
x, y,r,l,i = S
doty = k1*r*l+k2*y
dotx = k3*r*i-k4*x
dotr = k2*y-k1*r*l+k4*x-k3*r*i
dotl = k2*y-k1*r*l
doti = k4*x-k3*r*i
return np.array([doty, dotx, dotr, dotl, doti])
def solver(XY,t,para):
return odeint(derivative, XY, t, args = para, atol=1e-8, rtol=1e-11)
def integration(XY_arr,*para):
XY0 = para[:5]
para = para[5:]
T = np.arange(len(XY_arr))
res0 = solver(XY0,T, para)
res1 = [ solver(XY0,[t,t+1],para)[-1]
for t,XY in enumerate(XY_arr[:-1]) ]
return np.concatenate([res0,res1]).flatten()
XData =yexp
YData = np.concatenate([ yexp,yexp,yexp,yexp,yexp,yexp[1:],yexp[1:],yexp[1:],yexp[1:],yexp[1:]]).flatten()
p0 =[0,0,100,10,10,1e8,0.01]
params, info = curve_fit(integration,XData,YData,p0=p0, maxfev=5000)
XY0, para = params[:5], params[5:]
print(XY0,tuple(para))
t_plot = np.linspace(0,len(t),500)
x_plot = solver(XY0, t_plot, tuple(para))
But the output are not correct, as are the same as initial condition p0:
[ 0. 0. 100. 10. 10.] (100000000.0, 0.01)
I understand that the function 'integration' gives packed values of y for each function at each instant of time, but I don't know how to unpack them to make the curve_fitt separately. Maybe I don't quite understand how it works.
Thank you!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
正如您观察到的那样,Sympy无法解决该系统。这可能意味着将
最后一个情况是通用的情况,采用象征性解决的颂歌,添加一些随机术语,几乎可以肯定,所产生的颂歌不再象征性地解决。
据我了解,您可以通过状态空间
(CX,CY,CR,CL,CI)
带有4个参数K1,K1,K2,K2,K3,K4的ode系统具有模型。
,并且通过反应系统的结构r+i< - > x,r+l< - > y
,总和cr+cx+cy,cl+cy,ci+cx
都是恒定的。对于大约由模型表示的其他过程,您有时间序列数据
t [k],y [k]
y
component。另外,您还拥有有关初始状态和参数集的部分信息。如果有足够多的数据点,人们也可以忘记这些数据,适合所有参数,并将给定参数与计算的参数相比。有几个模块和软件包以或多或少的抽象方式解决了这项合适的任务。我认为可以使用Pyomo和Gekko。更直接的人可以使用scipy.odr或scipy.ptimize的设施。
正向函数
定义转换时间和参数准备一些数据的
,并准备以初始状态和系数分配组合参数向量的功能,调用曲线拟合功能,
结果证明
curve_fit
进入奇怪的区域具有较大的负值。可能的原因是,y
组件最终与所有其他组件相结合不足,这意味着某些参数的很大变化对y ,因此
y
中的最小噪声可以导致这些参数中的较大偏差。这显然发生(首先)到k3
。As you observed, sympy is not able to solve this system. This might mean that
The last case is the generic one, take a symbolically solvable ODE, add some random term, and almost certainly the resulting ODE is no longer symbolically solvable.
As I understand with the comments, you have an model via ODE system with state space
(cX,cY,cR,cL,cI)
with equations with 4 parametersk1,k2,k3,k4
and, by the structure of a reaction systemR+I <-> X, R+L <-> Y
, the sumscR+cX+cY, cL+cY, cI+cX
are all constant.For some other process that is approximately represented by the model, you have time series data
t[k],y[k]
for theY
component. Also you have partial information on the initial state and the parameter set. If there are sufficiently many data points one could also forget about these, fit for all parameters, and compare how far away the given parameters are to the computed ones.There are several modules and packages that solve this fitting task in a more or less abstract fashion. I think pyomo and gekko can both be used. More directly one can use the facilities of scipy.odr or scipy.optimize.
Define the forward function that transforms time and parameters
Prepare some data plus noise
Prepare the function that splits the combined parameter vector in initial state and coefficients, call the curve fitting function
It turns out that
curve_fit
goes into strange regions with large negative values. A likely reason is that theY
component is, in the end, not coupled strongly enough to all the other components, meaning that large changes in some of the parameters have minimal influence onY
, so that minimal noise inY
can lead to large deviations in these parameters. Here this apparently happens (first) tok3
.