如何使用多层神经网络预测R
这个问题的目的是使用多层神经网络(MLP-NN)预测下一个 预先预先预测(即第二天)11:00小时的耗电量。前430个样本将用作 培训数据,而其余数据将用作测试集。
好的,所以我不知道从哪里开始。如何确定输入?我必须使用自回旋模型。帮助
The objective of this question is to use a multilayer neural network (MLP-NN) to predict the next
step-ahead (i.e. next day) electricity consumption for the 11:00 hour case. The first 430 samples will be used as
the training data, while the remaining ones will be used as the testing set.
image of the energy consumption data. have 501 of these
Ok so i have no idea where to start. How do i determine the inputs? I have to use autoregressive model. Help
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
如您所知,您的数据代表时间序列。
MLP不能成功用于此类任务。
还有其他类型的用于序列学习的网络,包括所谓的香草RNN。
我建议您看一下 link 他们如何工作。
As you know, your data represents a time series.
An MLP cannot be used successfully for this type of task.
There are other types of networks for Sequence Learning, including the so-called Vanilla RNNs.
I recommend that you take a look at this link to better understand how they work.