寻找多项式分布的概率

发布于 2025-01-22 08:06:39 字数 346 浏览 0 评论 0原文

一个包包含5个dices,每个袋有六个面孔,概率$ p_1 $ = $ p_2 $ = $ p_3 $ = $ 2 p_4 $ = $ 2 p_5 $ = $ 3*p_6 $。选择两个脸部4的骰子和三个用面部1选择三个骰子的概率是多少? 有人尝试了图片中所示的R中的此问题的代码,但我不明白如何获得概率。请向我解释这个问题的答案。

A bag contain 5 dices and each have six faces with probability $p_1$=$p_2$=$p_3$=$2p_4$=$2p_5$=$3*p_6$. What is the probability of selecting two dice with face 4, and three dice with face 1?
Someone have try the codes for this problem in r shown in picture but I not understand how the probability is obtained. Kindly explain me the answer for this problem.

enter image description here

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

夏了南城 2025-01-29 08:06:39

首先,根据给定的平等性和以下假设查找p_i s值(替换所有p_i s基于它们与p_6的关系以找到它,然后找到每个p_i)的值:

p_1 + p_2 + p_3 + p_4 + p_5 + p_6 = 1

要找到概率,我们需要从2中选择5带有face> 4 其概率为p_4^2,对于其他dices,它们应该具有face 1,其概率为p_1^3

现在,要了解最后一步,您应该阅读dmultinom(x,size,prob) function的说明(来自此帖子):

生成多项式分布的随机数量向量并计算多项式概率。如果X是K-Component向量,则dmultinom(x,prob)是概率
p(x [1] = x [1],…,x [k] = x [k])= c * prod(j = 1,…,k)p [j]^x [j] [j] < /代码>。其中c是'多项式系数'c = n! /(x [1]! *… * x [k]!) and n = sum(j = 1,…,k)x [j]
根据定义,每个组件x [j]二元分配为bin(size,prob [j]) for j = 1,…,k


因此,dmultinom(j,n,p)表示c(5,2) * p_1^3 * p_4^2,as j =(3,0 ,0、2、0)n = 5p =(p_1,p_1,p_2,p_3,p_4,p_4,p_5,p_5,p_6)

First, find p_is values based on the given equalities and the following assumption (replace all p_is based on their relations with p_6 to find it, then find the value of each p_i):

p_1 + p_2 + p_3 + p_4 + p_5 + p_6 = 1

To find the probability, we need to select 2 out of 5 of dices with face 4 which its probability is p_4^2 and for other dices, they should have face 1 that it's probability is p_1^3.

Now, to understand the last step, you should read the explanation of the dmultinom(x, size, prob) function (from this post):

Generate multinomially distributed random number vectors and compute multinomial probabilities. If x is a K-component vector, dmultinom(x, prob) is the probability
P(X[1]=x[1], … , X[K]=x[k]) = C * prod(j=1 , …, K) p[j]^x[j]. where C is the ‘multinomial coefficient’ C = N! / (x[1]! * … * x[K]!) and N = sum(j=1, …, K) x[j].
By definition, each component X[j] is binomially distributed as Bin(size, prob[j]) for j = 1, …, K.

Therefore, dmultinom(j, n, p) means C(5,2) * p_1^3 * p_4^2, as j = (3, 0, 0, 2, 0), n=5, and p = (p_1, p_2, p_3, p_4, p_5, p_6).

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文