寻找多项式分布的概率
一个包包含5个dices,每个袋有六个面孔,概率$ p_1 $ = $ p_2 $ = $ p_3 $ = $ 2 p_4 $ = $ 2 p_5 $ = $ 3*p_6 $。选择两个脸部4的骰子和三个用面部1选择三个骰子的概率是多少? 有人尝试了图片中所示的R中的此问题的代码,但我不明白如何获得概率。请向我解释这个问题的答案。
A bag contain 5 dices and each have six faces with probability $p_1$=$p_2$=$p_3$=$2p_4$=$2p_5$=$3*p_6$. What is the probability of selecting two dice with face 4, and three dice with face 1?
Someone have try the codes for this problem in r shown in picture but I not understand how the probability is obtained. Kindly explain me the answer for this problem.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
首先,根据给定的平等性和以下假设查找
p_i
s值(替换所有p_i
s基于它们与p_6
的关系以找到它,然后找到每个p_i
)的值:要找到概率,我们需要从
2
中选择5
带有face> 4 其概率为
p_4^2
,对于其他dices,它们应该具有face1
,其概率为p_1^3
。现在,要了解最后一步,您应该阅读
dmultinom(x,size,prob)
function的说明(来自此帖子):因此,
dmultinom(j,n,p)
表示c(5,2) * p_1^3 * p_4^2
,asj =(3,0 ,0、2、0)
,n = 5
和p =(p_1,p_1,p_2,p_3,p_4,p_4,p_5,p_5,p_6)
。First, find
p_i
s values based on the given equalities and the following assumption (replace allp_i
s based on their relations withp_6
to find it, then find the value of eachp_i
):To find the probability, we need to select
2
out of5
of dices with face4
which its probability isp_4^2
and for other dices, they should have face1
that it's probability isp_1^3
.Now, to understand the last step, you should read the explanation of the
dmultinom(x, size, prob)
function (from this post):Therefore,
dmultinom(j, n, p)
meansC(5,2) * p_1^3 * p_4^2
, asj = (3, 0, 0, 2, 0)
,n=5
, andp = (p_1, p_2, p_3, p_4, p_5, p_6)
.