线性回归统计模型:缺少所需的结果变量
我正在使用StatsModel
来构建薪水的线性回归。这给我一个错误,说我缺少所需的结果变量。你能说我在这里做错了什么吗?我的初始模型my_model
似乎有效,但是ols
拟合模型说我缺少所需的结果变量。
my_model = str('Salary ~ X1 + X2')`
my_model = str('')
train_model_fit = smf.ols(my_model, data = X_train).fit()
print(train_model_fit.summary())
X_train['predict_salary'] = train_model_fit.fittedvalues
X_test['predict_salary'] = train_model_fit.predict(X_test)
I am using statsmodel
to build a linear regression for salary. It's giving me an error that says I am missing a required outcome variable. Can you tell what I am doing wrong here? My initial model, my_model
seemed working but the ols
fitted model says I am missing a required outcome variable.
my_model = str('Salary ~ X1 + X2')`
my_model = str('')
train_model_fit = smf.ols(my_model, data = X_train).fit()
print(train_model_fit.summary())
X_train['predict_salary'] = train_model_fit.fittedvalues
X_test['predict_salary'] = train_model_fit.predict(X_test)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
[回答完整性]
您将模型公式设置为第一行:
但是您为其分配一个空字符串:
因此错误。
[Answering for completeness]
You set the model formula in the first line:
But then you assign an empty string to it:
Hence the error.