解释损失和度量曲线
我正在尝试使用以下参数来训练UNET模型:
droput_: 0.2,
activation_: sigmoid,
activation_inner_: relu,
learning_rate_: 0.0001,
epsilon_: 1e-07,
loss : mse,
metric : rmse,
kernel_regularizer=regularizers.l1_l2(l1=0.01, l2=0.01), bias_regularizer=regularizers.l1_l2(l1=0.01, l2=0.01)
我运行了模型,并获得了以下损失和度量图。
蓝色=训练, 橙色=验证
,请帮助解释损失(MSE)和公制(RMSE)图。
- 太合适了吗?
- 公制图还可以吗?
I am trying to train Unet model with the following parameters:
droput_: 0.2,
activation_: sigmoid,
activation_inner_: relu,
learning_rate_: 0.0001,
epsilon_: 1e-07,
loss : mse,
metric : rmse,
kernel_regularizer=regularizers.l1_l2(l1=0.01, l2=0.01), bias_regularizer=regularizers.l1_l2(l1=0.01, l2=0.01)
I ran the model and got the following plot for loss and metric.
Blue = Training,
Orange = Validation
Please help in interpreting the loss (mse) and metric(rmse) graph.
- Is it overfitting?
- Does the metric plot is ok?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
当损失减少而对均方错误或更长的时间造成切碎的影响时,数据就足够独特了,或者它继续执行样本的行为。
[样本]:
DATA is unique enough they change a bit when loss decreases with a slicely effects on mean square errors or longer time it keep doing same behaviour that is samples.
[ Sample ]: