Python多处理进度方法
我一直在忙着编写我的第一个多处理代码,是的,是的。 但是,现在我想要一些进度的反馈,我不确定最好的方法是什么。
简
- 而
-
-
- 流程完成一个文件,它发送了一条“完成”消息。
- 主代码保留了我读了有关队列,池,tqdm的各种信息的数量完成的
- ,
Core 0 processing file 20 of 317 ||||||____ 60% completed
Core 1 processing file 21 of 317 |||||||||_ 90% completed
...
Core 7 processing file 18 of 317 ||________ 20% completed
我不确定要走哪种方式。谁能指出在这种情况下可以使用的方法?
提前致谢!
编辑:更改了我的代码,该代码启动了GSB22
我的代码的建议:
# file operations
import os
import glob
# Multiprocessing
from multiprocessing import Process
# Motion detection
import cv2
# >>> Enter directory to scan as target directory
targetDirectory = "E:\Projects\Programming\Python\OpenCV\\videofiles"
def get_videofiles(target_directory):
# Find all video files in directory and subdirectories and put them in a list
videofiles = glob.glob(target_directory + '/**/*.mp4', recursive=True)
# Return the list
return videofiles
def process_file(videofile):
'''
What happens inside this function:
- The video is processed and analysed using openCV
- The result (an image) is saved to the results folder
- Once this function receives the videofile it completes
without the need to return anything to the main program
'''
# The processing code is more complex than this code below, this is just a test
cap = cv2.VideoCapture(videofile)
for i in range(10):
succes, frame = cap.read()
# cv2.imwrite('{}/_Results/{}_result{}.jpg'.format(targetDirectory, os.path.basename(videofile), i), frame)
if succes:
try:
cv2.imwrite('{}/_Results/{}_result_{}.jpg'.format(targetDirectory, os.path.basename(videofile), i), frame)
except:
print('something went wrong')
if __name__ == "__main__":
# Create directory to save results if it doesn't exist
if not os.path.exists(targetDirectory + '/_Results'):
os.makedirs(targetDirectory + '/_Results')
# Get a list of all video files in the target directory
all_files = get_videofiles(targetDirectory)
print(f'{len(all_files)} video files found')
# Create list of jobs (processes)
jobs = []
# Create and start processes
for file in all_files:
proc = Process(target=process_file, args=(file,))
jobs.append(proc)
for job in jobs:
job.start()
for job in jobs:
job.join()
# TODO: Print some form of progress feedback
print('Finished :)')
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
这是一种以最低成本获取进度指示的非常简单的方法:
一些评论:
PIP安装TQDM
。nproc
流程。我们让池在输入数据上处理我们的过程函数。pool.imap
,它返回一个迭代器,该迭代器保持与我们传递的含义相同的顺序。因此我们可以使用zip
迭代files
>直接。由于我们使用尺寸未知的迭代器,因此需要告诉tqdm
它是多长时间的。 (我们本可以使用pool.map
,但是没有必要提交RAM--尽管对于一个布尔来说,这可能没有什么区别。)我故意将其写成一种食谱。您只需使用范式中的高级下降和
池。
参考
https://tqdm.github.io/
Here's a very simple way to get progress indication at minimal cost:
Some comments:
pip install tqdm
.NPROC
processes. We let the pool handle iterating our process function over the input data.Pool.imap
, which returns an iterator which keeps the same order as the iterable we pass in. So we can usezip
to iteratefiles
directly. Since we use an iterator with unknown size,tqdm
needs to be told how long it is. (We could have usedpool.map
, but there's no need to commit the ram---although for one bool it probably makes no difference.)I've deliberately written this as a kind of recipe. You can do a lot with multiprocessing just by using the high-level drop in paradigms, and
Pool.[i]map
is one of the most useful.References
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.Pool
https://tqdm.github.io/