我可以为OpenAI API Codex模型创建微调模型吗?
我想将用户请求转换为某种结构化数据格式的门票,例如JSON。例如:
- 用户:我想订购两把椅子和一张桌子,左侧有三个抽屉。
- 输出:
{
"type": "furniture",
"items": [
{ "type": "desk", "qty": 1, "included_items": [{ "type": "drawer", "qty": 3, "position": "left" }] },
{ "type": "chair", "qty": 2 }
]
}
看起来GPT-3本身并不适合此任务,因为输出不采用自然语言的形式,但是法典可能是吗?但是我在OpenAI API文档中找不到(如果有可能的话?)如何为OpenAI API Codex模型创建自定义 /微调模型?
I'd like to translate user requests into tickets in some sort of structured data format, e.g. JSON. For example:
- User: I want to order two chairs and a desk with three drawers on the left side.
- Output:
{
"type": "furniture",
"items": [
{ "type": "desk", "qty": 1, "included_items": [{ "type": "drawer", "qty": 3, "position": "left" }] },
{ "type": "chair", "qty": 2 }
]
}
It looks like GPT-3 itself is not very-well suited for this task, because output is not in the form of natural language, however Codex might be? But I can't find in OpenAI API docs how I can (if it's possible at all?) to create a custom / fine-tuned model for OpenAI API Codex models?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
@xara Codex不支持一种微调其模型的方法。
您能做的就是迅速工程。
为模型提供一些演示,并尝试使用Codex是否可以通过预期的输出来渗透您。
@xara Codex does not support a way to fine tune their model.
What you can do is prompt engineering.
Provide the model some demonstrations and try out whether Codex can perovide you with expected output.
如果您的JSON不太参与,您可能只需要及时的创意工程即可。在此示例中,我首先给您的提示,以显示标准输入和响应,然后将其设置为完成任务。这是我使用的确切提示:
请注意,我以三个刻度标记结束,以表明它应该立即以代码
chatgpt开始返回以下内容:
If your JSON is not too involved, you may simply need creative prompt engineering. In this example, I started by giving ChatGPT your prompt to show a standard input and response and then set it up as a completion task. This is the exact prompt I used:
Note that I concluded with three tick marks to indicate that it should immediately begin with the code
ChatGPT returned the following:
它目前正在Beta中,但是您可以在自定义数据集中微调OpenAI Codex模型,以提高其性能。请参阅以下链接以获取详细信息: https://beta.openai.com/文档/指南/微调
It is currently in beta, but you can fine-tune the OpenAI codex model on your custom dataset for a charge to improve its performance. Please refer to the following link for details instruction: https://beta.openai.com/docs/guides/fine-tuning