我可以为OpenAI API Codex模型创建微调模型吗?

发布于 2025-01-22 02:27:06 字数 435 浏览 0 评论 0原文

我想将用户请求转换为某种结构化数据格式的门票,例如JSON。例如:

  • 用户:我想订购两把椅子和一张桌子,左侧有三个抽屉。
  • 输出:
{
    "type": "furniture",
    "items": [
        { "type": "desk", "qty": 1, "included_items": [{ "type": "drawer", "qty": 3, "position": "left" }] },
        { "type": "chair", "qty": 2 }
    ]
}

看起来GPT-3本身并不适合此任务,因为输出不采用自然语言的形式,但是法典可能是吗?但是我在OpenAI API文档中找不到(如果有可能的话?)如何为OpenAI API Codex模型创建自定义 /微调模型?

I'd like to translate user requests into tickets in some sort of structured data format, e.g. JSON. For example:

  • User: I want to order two chairs and a desk with three drawers on the left side.
  • Output:
{
    "type": "furniture",
    "items": [
        { "type": "desk", "qty": 1, "included_items": [{ "type": "drawer", "qty": 3, "position": "left" }] },
        { "type": "chair", "qty": 2 }
    ]
}

It looks like GPT-3 itself is not very-well suited for this task, because output is not in the form of natural language, however Codex might be? But I can't find in OpenAI API docs how I can (if it's possible at all?) to create a custom / fine-tuned model for OpenAI API Codex models?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

£烟消云散 2025-01-29 02:27:06

@xara Codex不支持一种微调其模型的方法。

您能做的就是迅速工程。

为模型提供一些演示,并尝试使用Codex是否可以通过预期的输出来渗透您。

@xara Codex does not support a way to fine tune their model.

What you can do is prompt engineering.

Provide the model some demonstrations and try out whether Codex can perovide you with expected output.

苦笑流年记忆 2025-01-29 02:27:06

如果您的JSON不太参与,您可能只需要及时的创意工程即可。在此示例中,我首先给您的提示,以显示标准输入和响应,然后将其设置为完成任务。这是我使用的确切提示:

Please complete the following:
User: I want to order two chairs and a desk with three drawers on the left side.
Output:
```json
{
    "type": "furniture",
    "items": [
        { "type": "desk", "qty": 1, "included_items": [{ "type": "drawer", "qty": 3, "position": "left" }] },
        { "type": "chair", "qty": 2 }
    ]
}
```
User: I want three chairs and a desk with 2 drawers on the left and a desk with 3 drawers on the right.
Output:
```

请注意,我以三个刻度标记结束,以表明它应该立即以代码

chatgpt开始返回以下内容:

{
    "type": "furniture",
    "items": [
        { "type": "desk", "qty": 1, "included_items": [{ "type": "drawer", "qty": 2, "position": "left" }] },
        { "type": "desk", "qty": 1, "included_items": [{ "type": "drawer", "qty": 3, "position": "right" }] },
        { "type": "chair", "qty": 3 }
    ]
}

If your JSON is not too involved, you may simply need creative prompt engineering. In this example, I started by giving ChatGPT your prompt to show a standard input and response and then set it up as a completion task. This is the exact prompt I used:

Please complete the following:
User: I want to order two chairs and a desk with three drawers on the left side.
Output:
```json
{
    "type": "furniture",
    "items": [
        { "type": "desk", "qty": 1, "included_items": [{ "type": "drawer", "qty": 3, "position": "left" }] },
        { "type": "chair", "qty": 2 }
    ]
}
```
User: I want three chairs and a desk with 2 drawers on the left and a desk with 3 drawers on the right.
Output:
```

Note that I concluded with three tick marks to indicate that it should immediately begin with the code

ChatGPT returned the following:

{
    "type": "furniture",
    "items": [
        { "type": "desk", "qty": 1, "included_items": [{ "type": "drawer", "qty": 2, "position": "left" }] },
        { "type": "desk", "qty": 1, "included_items": [{ "type": "drawer", "qty": 3, "position": "right" }] },
        { "type": "chair", "qty": 3 }
    ]
}
寒冷纷飞旳雪 2025-01-29 02:27:06

它目前正在Beta中,但是您可以在自定义数据集中微调OpenAI Codex模型,以提高其性能。请参阅以下链接以获取详细信息: https://beta.openai.com/文档/指南/微调

It is currently in beta, but you can fine-tune the OpenAI codex model on your custom dataset for a charge to improve its performance. Please refer to the following link for details instruction: https://beta.openai.com/docs/guides/fine-tuning

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文