大偏斜对称矩阵的指数
我正在寻找大型(〜10000x10000)偏斜矩阵的快速启动算法。
偏斜的对称矩阵可以写为u是正交的a = uqu^t,而q是块对角线,具有2x2块。此外,Q是A的真实Schur分解A。然后,通过指出每个块,很容易指出Q。 ( https://math.stackexchange.com /esporta/3067307/the-the-of-a-skew-skew-skew-matrix-matrix-in-dimension )
然而,在python中,scipy.linalg.schur并不比scipy.linalg.linalg.expm快策略不合适。
是否有任何利用偏斜对称性的凸起或Schur分解算法?
I am looking for a fast exponentiation algorithm for large (~10000x10000) skew-symmetric matrix.
Skew symmetric matrices can be written as A=UQU^T where U is orthogonal and Q is block diagonal with 2x2 blocks. Moreover Q is the real Schur decomposition of A. Then, it is then easy to exponentiate Q by exponentiating each block.
(https://math.stackexchange.com/questions/3067307/the-exponential-of-a-skew-symmetric-matrix-in-any-dimension)
However, in Python, scipy.linalg.schur is not faster than scipy.linalg.expm so this strategy is not appropriate.
Is there any exponentiation or Schur decomposition algorithms that take advantage of the skew symmetry ?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论