如何在列表的每对元素之间计算语义相似性与wup_sibrility?
我有一个字符串列表,我想通过使用字符串的wup_simarility来计算每对之间的语义相似性之后创建一个矩阵视频,并用语义相似性的度量填充矩阵。
list=['empty', 'new', 'recent', 'warm', 'full', 'mixed', 'late',
'little', 'tentative', 'half', 'entree', 'tagliatelle',
'bolognese', 'asparagus', 'good', 'secondo', 'special', 'garlic',
'romanesco', 'bread', 'capable', 'comped',
'tasty', 'huge', 'hungry', 'crowd', 'former', 'able', 'Easy']
print(list)
import numpy as np
from nltk.corpus import wordnet
x = np.zeros((len(list), len(list)))
# print the matrix
print('The matrix is : \n', x)
for i in range(len(list)-1):
syn_sets = [wordnet.synsets(i) for i in list]
#syn1 = wordnet.synsets(list[i])
for j in range(len(list)-1):
syn_sets1 = [wordnet.synsets(j) for j in list]
# syn2 = wordnet.synsets(list[j])
x[i,j]= syn_sets.wup_similarity(syn_sets1)
print(x[i,j])
错误 :
AttributeError: 'list' object has no attribute 'wup_similarity'
I have a list of strings and I want to create a matrix vide after that I want calculate the semantics similarity between each pair by using wup_similarity of string and fill the matrix with the measures of semantics similarity.
list=['empty', 'new', 'recent', 'warm', 'full', 'mixed', 'late',
'little', 'tentative', 'half', 'entree', 'tagliatelle',
'bolognese', 'asparagus', 'good', 'secondo', 'special', 'garlic',
'romanesco', 'bread', 'capable', 'comped',
'tasty', 'huge', 'hungry', 'crowd', 'former', 'able', 'Easy']
print(list)
import numpy as np
from nltk.corpus import wordnet
x = np.zeros((len(list), len(list)))
# print the matrix
print('The matrix is : \n', x)
for i in range(len(list)-1):
syn_sets = [wordnet.synsets(i) for i in list]
#syn1 = wordnet.synsets(list[i])
for j in range(len(list)-1):
syn_sets1 = [wordnet.synsets(j) for j in list]
# syn2 = wordnet.synsets(list[j])
x[i,j]= syn_sets.wup_similarity(syn_sets1)
print(x[i,j])
error :
AttributeError: 'list' object has no attribute 'wup_similarity'
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论