缺少所需的位置参数:
我试图根据LSTM方法实施联合学习。
def create_keras_model():
model = Sequential()
model.add(LSTM(32, input_shape=(3,1)))
model.add(Dense(1))
return model
def model_fn():
keras_model = create_keras_model()
return tff.learning.from_keras_model(
keras_model,
input_spec=(look_back, 1),
loss=tf.keras.losses.mean_squared_error(),
metrics=[tf.keras.metrics.mean_squared_error()])
但是,当我想定义iterative_process时,我会遇到这个错误。
iterative_process = tff.learning.build_federated_averaging_process(
model_fn,
client_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=0.001),
server_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=1.0))
TypeError: Missing required positional argument
我该如何修复?
I tried to implement federated learning based on the LSTM approach.
def create_keras_model():
model = Sequential()
model.add(LSTM(32, input_shape=(3,1)))
model.add(Dense(1))
return model
def model_fn():
keras_model = create_keras_model()
return tff.learning.from_keras_model(
keras_model,
input_spec=(look_back, 1),
loss=tf.keras.losses.mean_squared_error(),
metrics=[tf.keras.metrics.mean_squared_error()])
but I got this error when I want to define iterative_process.
iterative_process = tff.learning.build_federated_averaging_process(
model_fn,
client_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=0.001),
server_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=1.0))
TypeError: Missing required positional argument
How do I fix it?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
与环回参数相匹配的提供的输入要求可以替换为客户列车数据要求。 (tensorspec) federated
您可以通过不同类型的输入参数并行工作。
[示例]:
[输出]:
The provided input requirements matching the loopback parameters may replace by the client train data requirements. ( TensorSpec ) federated
You can do works parallel by different types of input parameters.
[ Sample ]:
[ Output ]: