循环打印逻辑回归统计摘要| StatsModels
我试图弄清楚如何在statsmodels中实现循环以获取逻辑回归的统计摘要(通过自变量列表进行迭代)。我可以通过传统方法使其正常工作,但是使用for循环会使我的生活更容易找到变量之间的意义。
这是我要做的:
df = pd.read_csv('source/data_cleaning/cleaned_data.csv')
def opportunites():
dep = ['LEAVER']
indep = ['AGE', 'S0287', 'T0080', 'SALARY', 'T0329', 'T0333', 'T0159', 'T0165', 'EXPER', 'T0356']
for i in indep:
model = smf.logit(dep, i, data = df ).fit()
print(model.summary(yname="Status Leaver", xname=['Intercept', i ],
title='Single Logistic Regression'))
print()
opportunites()
这是有效的传统方法
def regressMulti2():
model = smf.logit('LEAVER ~ AGE ', data = df).fit()
print(model.summary(yname="Status Leaver",
xname=['Intercept', 'AGE Less than 40 (AGE)'], title='Logistic Regression of Leaver and Age'))
print()
regressMuti2()
I'm trying to figure out how to implement a for loop in statsmodels to get the statistics summary for a logistic regression (Iterate through independent variables list). I can get it to work fine with the traditional method, but using a for loop will make my life easier to find significance between variables.
Here is what I'm trying to do:
df = pd.read_csv('source/data_cleaning/cleaned_data.csv')
def opportunites():
dep = ['LEAVER']
indep = ['AGE', 'S0287', 'T0080', 'SALARY', 'T0329', 'T0333', 'T0159', 'T0165', 'EXPER', 'T0356']
for i in indep:
model = smf.logit(dep, i, data = df ).fit()
print(model.summary(yname="Status Leaver", xname=['Intercept', i ],
title='Single Logistic Regression'))
print()
opportunites()
Here is the traditional method that works
def regressMulti2():
model = smf.logit('LEAVER ~ AGE ', data = df).fit()
print(model.summary(yname="Status Leaver",
xname=['Intercept', 'AGE Less than 40 (AGE)'], title='Logistic Regression of Leaver and Age'))
print()
regressMuti2()
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)