当功能嵌套时,Python代码的执行时间大大增加

发布于 2025-01-21 11:14:14 字数 2919 浏览 0 评论 0原文

I have a function as below:

def shuffle_n_split(combined_arr, n):

    start_time = time.time() # adding for testing execution time
    random.shuffle(combined_arr)
    print("--- %s seconds ---" % (time.time() - start_time))

    #random.shuffle(combined_arr)
    X_n = combined_arr[:n]
    X_m = combined_arr[n:]

    return X_n, X_m

I have nested it in another function:

def p_r_test(combined_arr, n, k):
    distribution = []
    #for i in tqdm(range(k)):
    for i in range(k):
        X_n, X_m = shuffle_n_split(combined_arr, n)
        prop_X_n = sum(X_n)/len(X_n)
        prop_X_m = sum(X_m)/len(X_m)
        prop_diff = prop_X_n - prop_X_m
        distribution.append(prop_diff)
    return distribution

At this point, execution time is good:

--- 0.000997304916381836 seconds ---

--- 0.0 seconds ---

--- 0.000997304916381836 seconds ---

-- - 0.0009968280792236328 seconds ---

--- 0.0 seconds ---

--- 0.0 seconds ---

--- 0.0 seconds ---

--- 0.0009980201721191406 seconds ---

But when I further nest the latter function into another function, like this:

def a_b_test_and_report(df, col_name, dependent_var, dep_var_val, prop_diff, num_bins = 75):
    vals  = df[col_name].unique()

    num_var_1 = len(df[df[col_name] == vals[0]])
    num_var_2 = len(df[df[col_name] == vals[1]])

    print("Number of var1:")
    print(num_var_1)
    print("Number of var2:")
    print(num_var_2)

    cond_var1 = len(df[(df[col_name] == vals[0]) & (df[dependent_var] == dep_var_val)])
    prop_var1 = np.round_((cond_var1/num_var_1), decimals = 4)
    print('Proportion of variable 1 satisfying a condition')
    print(prop_var1)

    cond_var2 = len(df[(df[col_name] == vals[1]) & (df[dependent_var] == dep_var_val)])
    prop_var2 = np.round_((cond_var2/num_var_2), decimals = 4)
    print('Proportion of variable 2 satisfying a condition')
    print(prop_var2)


    prop_diff = np.absolute(np.round_(prop_var1 - prop_var2, decimals = 4))
    print('Difference between the two proportions')
    print(prop_diff)
   
    #return num_var_1, num_var_2, cond_var1, cond_var2, prop_var1, prop_var2, prop_diff
    combined_arr = df[dependent_var] 
    np.random.shuffle(combined_arr)
    X_n = combined_arr[:n]
    X_m = combined_arr[n:]

    n = num_var_1
    k = 100000
    disbn = p_r_test(combined_arr, n, k)

Executing the same code, I get the following execution time:

--- 1.983733892440796 seconds ---

--- 2.2649989128112793 seconds ---

--- 1.9628357887268066 seconds ---

--- 2.021646022796631 seconds ---

--- 1.879605770111084秒----------

1.952327350616455秒

------------------ 1.73837699890137秒----

这似乎没有任何意义,因为代码根本没有任何更改。

我什至更改了改组功能,并尝试了Numpy和随机库。两者都产生相同的效果。为什么会发生这种情况?

I have a function as below:

def shuffle_n_split(combined_arr, n):

    start_time = time.time() # adding for testing execution time
    random.shuffle(combined_arr)
    print("--- %s seconds ---" % (time.time() - start_time))

    #random.shuffle(combined_arr)
    X_n = combined_arr[:n]
    X_m = combined_arr[n:]

    return X_n, X_m

I have nested it in another function:

def p_r_test(combined_arr, n, k):
    distribution = []
    #for i in tqdm(range(k)):
    for i in range(k):
        X_n, X_m = shuffle_n_split(combined_arr, n)
        prop_X_n = sum(X_n)/len(X_n)
        prop_X_m = sum(X_m)/len(X_m)
        prop_diff = prop_X_n - prop_X_m
        distribution.append(prop_diff)
    return distribution

At this point, execution time is good:

--- 0.000997304916381836 seconds ---

--- 0.0 seconds ---

--- 0.000997304916381836 seconds ---

--- 0.0009968280792236328 seconds ---

--- 0.0 seconds ---

--- 0.0 seconds ---

--- 0.0 seconds ---

--- 0.0009980201721191406 seconds ---

But when I further nest the latter function into another function, like this:

def a_b_test_and_report(df, col_name, dependent_var, dep_var_val, prop_diff, num_bins = 75):
    vals  = df[col_name].unique()

    num_var_1 = len(df[df[col_name] == vals[0]])
    num_var_2 = len(df[df[col_name] == vals[1]])

    print("Number of var1:")
    print(num_var_1)
    print("Number of var2:")
    print(num_var_2)

    cond_var1 = len(df[(df[col_name] == vals[0]) & (df[dependent_var] == dep_var_val)])
    prop_var1 = np.round_((cond_var1/num_var_1), decimals = 4)
    print('Proportion of variable 1 satisfying a condition')
    print(prop_var1)

    cond_var2 = len(df[(df[col_name] == vals[1]) & (df[dependent_var] == dep_var_val)])
    prop_var2 = np.round_((cond_var2/num_var_2), decimals = 4)
    print('Proportion of variable 2 satisfying a condition')
    print(prop_var2)


    prop_diff = np.absolute(np.round_(prop_var1 - prop_var2, decimals = 4))
    print('Difference between the two proportions')
    print(prop_diff)
   
    #return num_var_1, num_var_2, cond_var1, cond_var2, prop_var1, prop_var2, prop_diff
    combined_arr = df[dependent_var] 
    np.random.shuffle(combined_arr)
    X_n = combined_arr[:n]
    X_m = combined_arr[n:]

    n = num_var_1
    k = 100000
    disbn = p_r_test(combined_arr, n, k)

Executing the same code, I get the following execution time:

--- 1.983733892440796 seconds ---

--- 2.2649989128112793 seconds ---

--- 1.9628357887268066 seconds ---

--- 2.021646022796631 seconds ---

--- 1.879605770111084 seconds ---

--- 1.9523327350616455 seconds ---

--- 1.7383837699890137 seconds ---

This doesn't seem to make any sense as code hasn't changes at at all.

I even changed the shuffling function and tried both numpy and random libraries. Both give same effect. Why is this happening?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文