如何通过Sklearn随机网格搜索XGBranker中的组信息?
当我尝试在XGBranker模型上执行随机网格搜索时,我会遇到以下错误:
/workspace/src/objective/rank_obj.cc:52:检查失败:gptr.size()!= 0&&& gptr.back()== info.labels_.size():组结构与#rows
不一致
错误似乎与传递的组信息的结构有关。我正在传递每个组的大小。如果有n行和2个组,则传递的数组将是[g1_size,g2_size]。
我不确定我会在哪里出错,因为我能够在没有任何问题的情况下适应该模型。只有当我尝试执行RandomGridSearchCV时,我才会面临此错误。代码段如下:
model = xgb.XGBRanker(
objective="rank:ndcg",
max_depth= 10,
n_estimators=100,
verbosity=1)
param_dist = {'n_estimators': [100,200,300],
'learning_rate': [1e-3,1e-4,1e-5],
'subsample': [0.8,0.9,1],
'max_depth': [5, 6, 7]
}
fit_params = {"group": groups}
scoring = make_scorer(ndcg_score, greater_is_better=True)
clf = RandomizedSearchCV(model,
param_distributions=param_dist,
cv =5,
n_iter=5,
scoring=scoring,
error_score=0,
verbose=3,
n_jobs=-1)
clf.fit(X_train, Y_train,**fit_params)
When I'm tryingto perform random grid search on XGBRanker model, I keep getting an error as follows:
/workspace/src/objective/rank_obj.cc:52: Check failed: gptr.size() != 0 && gptr.back() == info.labels_.Size(): group structure not consistent with #rows
The error seems to be regarding the structure of the group information passed. I'm passing the size of each group. If there are N rows and 2 groups then the array passed would be [g1_size, g2_size].
I'm not sure where I'm going wrong since I'm able to fit the model without any issues. Only when I try to perform RandomGridSearchCV, am I facing this error. The code snippet is as follows:
model = xgb.XGBRanker(
objective="rank:ndcg",
max_depth= 10,
n_estimators=100,
verbosity=1)
param_dist = {'n_estimators': [100,200,300],
'learning_rate': [1e-3,1e-4,1e-5],
'subsample': [0.8,0.9,1],
'max_depth': [5, 6, 7]
}
fit_params = {"group": groups}
scoring = make_scorer(ndcg_score, greater_is_better=True)
clf = RandomizedSearchCV(model,
param_distributions=param_dist,
cv =5,
n_iter=5,
scoring=scoring,
error_score=0,
verbose=3,
n_jobs=-1)
clf.fit(X_train, Y_train,**fit_params)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论