在创建用于文本分类的二进制分类模型时出错

发布于 2025-01-21 09:23:38 字数 1394 浏览 5 评论 0 原文

代码:

model = create_model()
model.compile(optimize=tf.keras.optimizers.Adam(learning_rate=2e-5),
              loss=tf.keras.losses.BinaryCrossentropy(),
              metrics=[tf.keras.metrics.BinaryAccuracy()])
model.summary()

错误:

TypeError                                 Traceback (most recent call last)
<ipython-input-58-cdba04f466b1> in <module>()
      2 model.compile(optimize=tf.keras.optimizers.Adam(learning_rate=2e-5),
      3               loss=tf.keras.losses.BinaryCrossentropy(),
----> 4               metrics=[tf.keras.metrics.BinaryAccuracy()])
      5 model.summary()

1 frames
/usr/local/lib/python3.7/dist-packages/keras/engine/training.py in _validate_compile(self, optimizer, metrics, **kwargs)
   2981     invalid_kwargs = set(kwargs) - {'sample_weight_mode'}
   2982     if invalid_kwargs:
-> 2983       raise TypeError('Invalid keyword argument(s) in `compile()`: '
   2984                       f'{(invalid_kwargs,)}. Valid keyword arguments include '
   2985                       '"cloning", "experimental_run_tf_function", "distribute",'

TypeError: Invalid keyword argument(s) in `compile()`: ({'optimize'},). Valid keyword arguments include "cloning", "experimental_run_tf_function", "distribute", "target_tensors", or "sample_weight_mode".

有人可以看一下吗? 在这里构建用于微调BERT的模型用于文本分类

code:

model = create_model()
model.compile(optimize=tf.keras.optimizers.Adam(learning_rate=2e-5),
              loss=tf.keras.losses.BinaryCrossentropy(),
              metrics=[tf.keras.metrics.BinaryAccuracy()])
model.summary()

error:

TypeError                                 Traceback (most recent call last)
<ipython-input-58-cdba04f466b1> in <module>()
      2 model.compile(optimize=tf.keras.optimizers.Adam(learning_rate=2e-5),
      3               loss=tf.keras.losses.BinaryCrossentropy(),
----> 4               metrics=[tf.keras.metrics.BinaryAccuracy()])
      5 model.summary()

1 frames
/usr/local/lib/python3.7/dist-packages/keras/engine/training.py in _validate_compile(self, optimizer, metrics, **kwargs)
   2981     invalid_kwargs = set(kwargs) - {'sample_weight_mode'}
   2982     if invalid_kwargs:
-> 2983       raise TypeError('Invalid keyword argument(s) in `compile()`: '
   2984                       f'{(invalid_kwargs,)}. Valid keyword arguments include '
   2985                       '"cloning", "experimental_run_tf_function", "distribute",'

TypeError: Invalid keyword argument(s) in `compile()`: ({'optimize'},). Valid keyword arguments include "cloning", "experimental_run_tf_function", "distribute", "target_tensors", or "sample_weight_mode".

can someone have a look into this?
here building a model for fine-tuning BERT for text classification

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

唱一曲作罢 2025-01-28 09:23:38

我能够使用示例代码复制上述问题,如下所示

import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam


c = np.array([-40, -10, -0, 8, 15, 22, 38])
f = np.array([-40, 14, 32, 46, 59, 72, 100])

model = Sequential()
model.add(Dense(units=1,input_shape=(1,), activation='linear'))

model.compile(loss='mean_squared_error', optimize= Adam(0.1))

history = model.fit(c, f, epochs=5, verbose=0)

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-2-659b944d282f> in <module>()
     12 model.add(Dense(units=1,input_shape=(1,), activation='linear'))
     13 
---> 14 model.compile(loss='mean_squared_error', optimize= Adam(0.1))
     15 
     16 history = model.fit(c, f, epochs=5, verbose=0)

1 frames
/usr/local/lib/python3.7/dist-packages/keras/engine/training.py in _validate_compile(self, optimizer, metrics, **kwargs)
   2981     invalid_kwargs = set(kwargs) - {'sample_weight_mode'}
   2982     if invalid_kwargs:
-> 2983       raise TypeError('Invalid keyword argument(s) in `compile()`: '
   2984                       f'{(invalid_kwargs,)}. Valid keyword arguments include '
   2985                       '"cloning", "experimental_run_tf_function", "distribute",'

TypeError: Invalid keyword argument(s) in `compile()`: ({'optimize'},). Valid keyword arguments include "cloning", "experimental_run_tf_function", "distribute", "target_tensors", or "sample_weight_mode".

固定代码:

typeError明确指南,这是由于错别字所致,请您可以更改“优化”为<代码>优化器如下所示,

model.compile(loss='mean_squared_error', optimizer= Adam(0.1))

有关更多详细信息,请找到参考。

I was able to replicate above issue using sample code as shown below

import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam


c = np.array([-40, -10, -0, 8, 15, 22, 38])
f = np.array([-40, 14, 32, 46, 59, 72, 100])

model = Sequential()
model.add(Dense(units=1,input_shape=(1,), activation='linear'))

model.compile(loss='mean_squared_error', optimize= Adam(0.1))

history = model.fit(c, f, epochs=5, verbose=0)

Output:

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-2-659b944d282f> in <module>()
     12 model.add(Dense(units=1,input_shape=(1,), activation='linear'))
     13 
---> 14 model.compile(loss='mean_squared_error', optimize= Adam(0.1))
     15 
     16 history = model.fit(c, f, epochs=5, verbose=0)

1 frames
/usr/local/lib/python3.7/dist-packages/keras/engine/training.py in _validate_compile(self, optimizer, metrics, **kwargs)
   2981     invalid_kwargs = set(kwargs) - {'sample_weight_mode'}
   2982     if invalid_kwargs:
-> 2983       raise TypeError('Invalid keyword argument(s) in `compile()`: '
   2984                       f'{(invalid_kwargs,)}. Valid keyword arguments include '
   2985                       '"cloning", "experimental_run_tf_function", "distribute",'

TypeError: Invalid keyword argument(s) in `compile()`: ({'optimize'},). Valid keyword arguments include "cloning", "experimental_run_tf_function", "distribute", "target_tensors", or "sample_weight_mode".

Fixed code:

Above TypeError clearly guide and it is due to typo, please can you change optimize to optimizer as shown below

model.compile(loss='mean_squared_error', optimizer= Adam(0.1))

For more details please find the gist for reference.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文