Python OpenCV如何改善SIFT输出?
train_image = 'train_image location'
sift = cv2.SIFT_create()
gray = cv2.cvtColor(train_image, cv2.COLOR_BGR2GRAY)
(kp, descs) = sift.detectAndCompute(gray, None)
我为火车型号提供了39,209个流量标志图片的数据集。当我尝试从他们那里获得筛选功能3131时无法创建desc。在尝试调整此代码有问题的图像大小后,
resized = cv2.resize(train_image,(256,256))
数字从3131下降到2613。更好的 ?
train_image = 'train_image location'
sift = cv2.SIFT_create()
gray = cv2.cvtColor(train_image, cv2.COLOR_BGR2GRAY)
(kp, descs) = sift.detectAndCompute(gray, None)
I have a dataset of 39,209 traffic sign pictures for my train model. When i try to get SIFT features from them 3131 of the pictures were unable to create descs.After that i tried resize the images that had problems with this code
resized = cv2.resize(train_image,(256,256))
The number went from 3131 down to 2613. What can i else do to make the SIFT better ?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
我发现改变亮度和对比可能会有所帮助。
麻烦的数据从2613下降到Araound 300。
I found out that changing the brightness and contrast could help.It made the
troublesome data go down from 2613 to araound 300.