tf.keras.callbacks.modelcheckpoint忽略蒙台参数,并始终使用损失
我正在使用准确度度量来运行tf.keras.callbacks.modelcheckpoint,但损失用于保存最佳检查点。我已经在不同的地方(我的计算机和协作)和两个不同的代码进行了测试,并面临同一问题。这是一个示例代码和结果:
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import os
import shutil
def get_uncompiled_model():
inputs = keras.Input(shape=(784,), name="digits")
x = layers.Dense(64, activation="relu", name="dense_1")(inputs)
x = layers.Dense(64, activation="relu", name="dense_2")(x)
outputs = layers.Dense(10, activation="softmax", name="predictions")(x)
model = keras.Model(inputs=inputs, outputs=outputs)
return model
def get_compiled_model():
model = get_uncompiled_model()
model.compile(
optimizer="rmsprop",
loss="sparse_categorical_crossentropy",
metrics=["accuracy"],
)
return model
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
# Preprocess the data (these are NumPy arrays)
x_train = x_train.reshape(60000, 784).astype("float32") / 255
x_test = x_test.reshape(10000, 784).astype("float32") / 255
y_train = y_train.astype("float32")
y_test = y_test.astype("float32")
# Reserve 10,000 samples for validation
x_val = x_train[-10000:]
y_val = y_train[-10000:]
x_train = x_train[:-10000]
y_train = y_train[:-10000]
ckpt_folder = os.path.join(os.getcwd(), 'ckpt')
if os.path.exists(ckpt_folder):
shutil.rmtree(ckpt_folder)
ckpt_path = os.path.join(r'D:\deep_learning\tf_keras\semantic_segmentation\logs', 'mymodel_{epoch}')
callbacks = [
tf.keras.callbacks.ModelCheckpoint(
# Path where to save the model
# The two parameters below mean that we will overwrite
# the current checkpoint if and only if
# the `val_loss` score has improved.
# The saved model name will include the current epoch.
filepath=ckpt_path,
montior="val_accuracy",
# save the model weights with best validation accuracy
mode='max',
save_best_only=True, # only save the best weights
save_weights_only=False,
# only save model weights (not whole model)
verbose=1
)
]
model = get_compiled_model()
model.fit(
x_train, y_train, epochs=3, batch_size=1, callbacks=callbacks, validation_split=0.2, steps_per_epoch=1
)
1/1 [========================================= :2.6475-准确性:0.0000E+00 epoch 1:val_loss从-inf提高到2.32311,将模型保存到d:\ deep_learning \ tf_keras \ semantic_sementation \ logs \ mymodel_1 1/1 [============================================================== 00 -Val_loss:2.3231 -Val_accuracy:0.1142
时期2/3 1/1 [=========================================== EPOCH 2:Val_loss从2.32311提高到2.34286,将模型保存到D:\ deep_learning \ tf_keras \ semantic_sementation \ logs \ logs \ mymodel_2 1/1 [==============================] - 5s 5s/step - loss: 1.9612 - accuracy: 1.0000 - val_loss :2.3429 -Val_accuracy:0.1187
时期3/3 1/1 [========================================== Epoch 3:Val_loss并未从2.34286提高 1/1 [=============================================================================================================================================================================================== 00 -Val_loss:2.2943 -Val_accuracy:0.1346
I am running tf.keras.callbacks.ModelCheckpoint with the accuracy metric but loss is used to save the best checkpoints. I have tested this in different places (my computer and collab) and two different code and faced the same issue. Here is an example code and the results:
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import os
import shutil
def get_uncompiled_model():
inputs = keras.Input(shape=(784,), name="digits")
x = layers.Dense(64, activation="relu", name="dense_1")(inputs)
x = layers.Dense(64, activation="relu", name="dense_2")(x)
outputs = layers.Dense(10, activation="softmax", name="predictions")(x)
model = keras.Model(inputs=inputs, outputs=outputs)
return model
def get_compiled_model():
model = get_uncompiled_model()
model.compile(
optimizer="rmsprop",
loss="sparse_categorical_crossentropy",
metrics=["accuracy"],
)
return model
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
# Preprocess the data (these are NumPy arrays)
x_train = x_train.reshape(60000, 784).astype("float32") / 255
x_test = x_test.reshape(10000, 784).astype("float32") / 255
y_train = y_train.astype("float32")
y_test = y_test.astype("float32")
# Reserve 10,000 samples for validation
x_val = x_train[-10000:]
y_val = y_train[-10000:]
x_train = x_train[:-10000]
y_train = y_train[:-10000]
ckpt_folder = os.path.join(os.getcwd(), 'ckpt')
if os.path.exists(ckpt_folder):
shutil.rmtree(ckpt_folder)
ckpt_path = os.path.join(r'D:\deep_learning\tf_keras\semantic_segmentation\logs', 'mymodel_{epoch}')
callbacks = [
tf.keras.callbacks.ModelCheckpoint(
# Path where to save the model
# The two parameters below mean that we will overwrite
# the current checkpoint if and only if
# the `val_loss` score has improved.
# The saved model name will include the current epoch.
filepath=ckpt_path,
montior="val_accuracy",
# save the model weights with best validation accuracy
mode='max',
save_best_only=True, # only save the best weights
save_weights_only=False,
# only save model weights (not whole model)
verbose=1
)
]
model = get_compiled_model()
model.fit(
x_train, y_train, epochs=3, batch_size=1, callbacks=callbacks, validation_split=0.2, steps_per_epoch=1
)
1/1 [==============================] - ETA: 0s - loss: 2.6475 - accuracy: 0.0000e+00
Epoch 1: val_loss improved from -inf to 2.32311, saving model to D:\deep_learning\tf_keras\semantic_segmentation\logs\mymodel_1
1/1 [==============================] - 6s 6s/step - loss: 2.6475 - accuracy: 0.0000e+00 - val_loss: 2.3231 - val_accuracy: 0.1142
Epoch 2/3
1/1 [==============================] - ETA: 0s - loss: 1.9612 - accuracy: 1.0000
Epoch 2: val_loss improved from 2.32311 to 2.34286, saving model to D:\deep_learning\tf_keras\semantic_segmentation\logs\mymodel_2
1/1 [==============================] - 5s 5s/step - loss: 1.9612 - accuracy: 1.0000 - val_loss: 2.3429 - val_accuracy: 0.1187
Epoch 3/3
1/1 [==============================] - ETA: 0s - loss: 2.8378 - accuracy: 0.0000e+00
Epoch 3: val_loss did not improve from 2.34286
1/1 [==============================] - 5s 5s/step - loss: 2.8378 - accuracy: 0.0000e+00 - val_loss: 2.2943 - val_accuracy: 0.1346
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
在你的代码中,你写的是
montior
而不是monitor
,并且该函数没有这个词作为参数,然后使用默认值,如果你像下面这样写,你会得到你想要什么:In your code, You write
montior
instead ofmonitor
, and the function doesn't have this word as param then use the default value, If you write like below, You get what you want: