矩阵的幂
假设我们有一个Hermitian矩阵a
,该> a 已知具有倒数。
我知道zgetrf
和zgetri
Lapack库中的子例程可以计算逆矩阵。
Lapack或Blas库中是否可以直接计算a^{ - 1/2}
或任何其他方法来计算a^{ - 1/2}
?
Suppose we have a Hermitian matrix A
that is known to have an inverse.
I know that ZGETRF
and ZGETRI
subroutines in LAPACK library can compute the inverse matrix.
Is there any subroutine in LAPACK or BLAS library can calculate A^{-1/2}
directly or any other way to compute A^{-1/2}
?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您可以按照与求矩阵指数类似的过程对矩阵求幂:
v_i
和相应的特征值e_i
。{e_i}^{-1/2}
。{e_i}^{-1/2}
、特征向量为v_i
的矩阵。值得注意的是,正如此处所述,这个问题没有唯一的解决方案。在上面的步骤 2 中,
{e_i}^{-1/2}
和-{e_i}^{-1/2}
都会得出有效的解决方案,因此N*N
矩阵A
将至少有2^N
矩阵B
,使得B^{ -2}=A
。如果任何特征值是退化的,那么将存在连续的有效解空间。You can raise a matrix to a power following a similar procedure to taking the exponential of a matrix:
v_i
and corresponding eigenvaluese_i
.{e_i}^{-1/2}
.{e_i}^{-1/2}
and whose eigenvectors arev_i
.It's worth noting that, as described here, this problem does not have a unique solution. In step 2 above, both
{e_i}^{-1/2}
and-{e_i}^{-1/2}
will lead to valid solutions, so anN*N
matrixA
will have at least2^N
matricesB
such thatB^{-2}=A
. If any of the eigenvalues are degenerate then there will be a continuous space of valid solutions.