具有固定尺寸不规则形状的网格近似
假设我有一个网眼,我想通过放置一堆不规则的物体来近似地表面。每个不规则的形状都是固定大小的,但可以以15度的增量旋转(围绕3D的“向上”轴)。他们的位置是整数坐标。网格的内部不需要覆盖。
请参阅我的(差)尝试在下图中近似一个2D示例。
我已经研究了形状近似,带有几何套装盖的体素化和表面相似性指标,但发现它非常不知所措,但我还没有找到所需的东西。它不必是快速算法。标准是最小化对象(或多边形)计数和“从远处看起来不错”的某种混合。
您认为这里哪种算法在这里是最富有成果的?您要解决此类问题的最佳工具是什么?例如pymesh等
。 alt =“形状近似”>
Suppose I have a mesh that I'd like to approximate the surface of by placing a bunch of irregular objects. Each irregular shape is of fixed-size, but can be rotated in increments of 15 degrees (around the "up" axis in 3D). Their positions are integer co-ordinates. The interior of the mesh does not need to be covered.
See my (poor) attempt to approximate a 2D example in the diagram below.
I've looked into shape approximation, voxelization with geometric set cover, and surface similarity metrics, but find it quite overwhelming and I haven't found quite what I'm looking for. It doesn't need to be a fast algorithm. The criteria are some mix of minimizing object (or polygon) count and "looking good from a distance".
What algorithms do you think would be most fruitful here? What are your go-to tools for tackling and visualizing this kind of problem? e.g. PyMesh, etc.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论