Hashmap(O(1))支持Joker/Match-All键
标题不太清楚,因为我不能将问题放在句子中(如果您有更好的标题,请建议)。我将尝试用一个示例来阐明我的要求:
假设我有一个表格:
| Origin | Destination | Airline | Free Baggage |
===================================================
| NYC | London | American | 20KG |
---------------------------------------------------
| NYC | * | Southwest | 30KG |
---------------------------------------------------
| * | * | Southwest | 25KG |
---------------------------------------------------
| * | LA | * | 20KG |
---------------------------------------------------
| * | * | * | 15KG |
---------------------------------------------------
and so on ...
此表描述了航空公司在不同路线中提供的免费行李金额。您会看到一些行具有*
值,这意味着它们匹配所有可能的值(这些值不一定是知道的)。
因此,我们有大量的行李规则(如上表)和大量航班(他们的起源,目的地和航空公司闻名),我们打算要以最有效的方式找到每架航班的行李金额(迭代列表不是一种有效的方式,显然,它将花费o(n)
计算)。它 在每次飞行中都可能存在多个结果,但是在这种情况下,第一个匹配或最具体的匹配将是首选的(以更简单的方式继续进行) 。
如果表中没有*
符号,则问题很容易,我们可以使用hashmap
或dictionary
值的元组作为钥匙。但是,由于存在这些*
(假设All)键,为此提供一般解决方案并不是那么直接。
请注意,上面的示例只是一个示例,我需要一个解决方案,该解决方案可用于任何数量的密钥,而不仅仅是三个密钥。
您对此问题有任何想法或实现,使用具有时间复杂性或接近o(1)
的查找方法就像常规的hashmap一样(内存不是问题)?最好的解决方案是什么?
The title is not so clear, because I cannot put my problem in a sentence (If you have a better title for this question, please suggest). I'll try to clarify my requirement with an example:
Suppose I have a table like this:
| Origin | Destination | Airline | Free Baggage |
===================================================
| NYC | London | American | 20KG |
---------------------------------------------------
| NYC | * | Southwest | 30KG |
---------------------------------------------------
| * | * | Southwest | 25KG |
---------------------------------------------------
| * | LA | * | 20KG |
---------------------------------------------------
| * | * | * | 15KG |
---------------------------------------------------
and so on ...
This table describes free baggage amount that the airlines provide in different routes. You can see that some rows have *
value, meaning that they match all possible values (those values are not known necessarily).
So we have a large list of baggage rules (like the table above) and a large list of flights (which their origin, destination and airline is known), and we intend to find the baggage amount for each one of flights in the most efficient way (iterating the list is not an efficient way, obviously, as it will cost an O(N)
computation). It is possible to exist more than one result for each flight, but we will assume that in this case either the first matching or the most specific one will be preferred (whichever is simpler for you to continue with).
If there was not *
signs in the table, the problem would be easy, and we could use a Hashmap
or Dictionary
with a Tuple
of values as a key. But with presence of those *
(lets say match-all) keys, it is not so straight forward to provide a general solution for that.
Please note that the above example was just an example, and I need a solution that can be used for any number of keys, not just three.
Do you have any idea or implementation for this problem, with a lookup method having time complexity equal or close to O(1)
like a regular hashmap (memory will not be an issue)? What would be the best possible solution?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
关于评论,我对它的考虑越多,它看起来就越像一个带有索引而不是hashmap的关系数据库...
一个琐碎的,非常简单的解决方案可能是内存sqlite数据库。但这可能是
o(log2(n))
中的东西,而不是o(1)
。主要优点是它很容易设置, 表演足够好,它可能是最终解决方案。在这里,关键是使用适当的索引,
喜欢
运算符,当然定义明确的JOIN
条款。从头开始,我想不出任何解决方案,具有
n
行和m
列,至少不在o(m) ...但是通常,您的列比行要少。很快 - 我可能已经跳过了一个细节,我可以在即时写下 - 我可以向您提出此算法 /容器:
数据必须存储在类似向量的容器中
vecdata < / code < / code>,通过
o(1)
的简单索引。将其视为数据库中的A 主键,我们将其称为pk
。知道pk
在o(1)
中立即为您提供所需的数据。您将拥有n
行总数。对于不包含任何
*
的每一行,您将在一个称为mainhash
的真实hashmap中插入,配对(&lt; tuple&gt;,pk)。为了确切的结果,这是您的主要索引。它将在
o(1)
,中,但您要求的内容可能不在...显然,您必须保持Mainhash
和vecdata
,使用所需的一切(静音,锁,不在乎两者都一致)。这最多包含
n
条目。没有任何小丑,它将接近作为标准的哈希图,但对于vecdata
的间接方式。它仍然是o(1)
在这种情况下。对于每个可搜索的列,您将构建一个专用于本列的特定索引。
该索引具有
n
条目。它将是标准的hashmap,但是必须允许给定键的多个值。这是一个很常见的容器,因此这不是问题。对于每一行,索引条目将是:
(&lt; vecdata value&gt; pk)
。该容器存储在索引向量中,index [i]
(带有0&lt; = i&lt; m
)。与
Mainhash
相同,必须执行一致性。显然,当将条目插入
vecdata < / code>时,应构建所有这些索引 /子字符,并在需要时在磁盘上保存 - 您每次启动应用程序时都不想重新构造全部。 ..
搜索一行
,因此用户搜索给定的元组。
在
mainhash
中搜索它。如果发现,请返回,搜索完成。升级(请参见下文):在转到步骤2。
之前,也搜索
缓存
对于每个元组元素
元组[0&lt; = i&lt; m]
,在index [i]
中搜索两个tuple [i]
> (返回pk
的向量,精确[i]
)和*
(返回pk ,
fuzzy [i]
)。使用这两个向量,构建另一个(临时)哈希
tmphash
,关联(pk,integer count)
。它很简单:count
初始化为1
如果条目来自exact
,而0
如果它来自<代码>模糊。对于下一列,构建
精确
和fuzzy
(请参阅#2)。但是,与其制作新的tmphash
,您将 合并 将结果纳入而不是创建新的临时哈希。方法是:如果
tmphash
没有此pk
条目,则垃圾端此条目:它根本无法匹配。否则,请读取count
值,将1
或0
根据其来自何处添加,在tmphash 。
完成所有列后,您必须分析
tmphash
。首先分析
tmphash
,如果
tmphash
是空的,则您没有任何合适的答案。将其返回给用户。如果仅包含一个条目,则相同:直接返回用户。对于
tmphash
中的多个元素:tmphash
容器,搜索最大count
。在内存中维护pk
与count
的当前最大值关联。计数
以相同的最大值,您可以将它们全部返回,返回第一个或最后一个。Count
显然总是比M
- 否则,您会在Mainhash
中找到元组。与m
相比,此值可以给您的结果给出信心标记(=100*Count/M
%的信心百分比)。cache
的hashmap中。由于在
vecdata
中添加/修改某些内容时,要正确更新缓存
,这太复杂了,因此只需清除cache
发生时即可。毕竟,这只是一个缓存...如果该语言不帮助您,这是非常复杂的,特别是通过重新定义操作员并拥有所有基本容器可用,但应该可以使用。
精确匹配 /缓存匹配在
o(1)< / code>中。模糊搜索在
o(nm)
中,n
是匹配行的数量(和0&lt; = n&lt; n&lt; n
当然)。没有进一步的研究,我看不出比这更好的事情。它会消耗淫秽的记忆力,但您说这不是问题。
Regarding the comments, the more I think about it, and the more it looks like a relational database with indexes rather than an hashmap...
A trivial, quite easy solution could be something like an In-memory SQlite database. But it would probably be something in
O(log2(n))
, and notO(1)
. The main advantage is that it's easy to set up, and IF performances are good enough, it could be the final solution.Here, key is to use proper indexes, the
LIKE
operator, and of course well-definedJOIN
clauses.From scratch, I can't think about any solution that, having
N
rows andM
columns, isn't at least inO(M)
... But usually, you'll have way less columns than rows. Quickly - I may have skipped a detail, I write that on-the-fly - I can propose you this algorithm / container:Data must be stored in a vector-like container
VECDATA
, accessed by a simple index inO(1)
. Think about this as a primary key in databases, and we'll call itPK
. KnowingPK
gives you instantly, inO(1)
, the required data. You'll haveN
rows grand total.For each row NOT containing any
*
, you'll insert in a real hashmap calledMAINHASH
the pair(<tuple>, PK)
. This is your primary index, for exact results. It will be inO(1)
, BUT what you requested may not be within... Obviously, you must maintain consistency betweenMAINHASH
andVECDATA
, with whatever is needed (mutexes, locks, don't care as long as both are consistents).This hash contains at most
N
entries. Without any joker, it will act near as a standard hashmap, but for the indirection toVECDATA
. It's stillO(1)
in this case.For each searchable column, you'll build a specific index, dedicated to this column.
The index has
N
entries. It will be a standard hashmap, but it MUST allow multiple values for a given key. That's quite a common container, so it shouldn't be an issue.For each row, the index entry will be:
( <VECDATA value>, PK )
. The container is stored in a vector of indexes,INDEX[i]
(with0<=i<M
).Same as
MAINHASH
, consistency must be enforced.Obviously, all these indexes / subcontainers should be constructed when an entry is inserted into
VECDATA
, and saved on disk across sessions if needed - you don't want to reconstruct all this each time you start the application...Searching a row
So, user search for a given tuple.
Search it in
MAINHASH
. If found, return it, search done.Upgrade (see below): search also in
CACHE
before going to step #2.For each tuple element
tuple[0<=i<M]
, search inINDEX[i]
for bothtuple[i]
(returns a vector ofPK
,EXACT[i]
) AND for*
(returns another vector ofPK
,FUZZY[i]
).With these two vectors, build another (temporary) hash
TMPHASH
, associating( PK, integer COUNT )
. It quite simple:COUNT
is initialized to1
if entry comes fromEXACT
, and0
if it comes fromFUZZY
.For next column, build
EXACT
andFUZZY
(see #2). But instead of making a newTMPHASH
, you'll MERGE the results into rather than creating a new temporary hash.Method is: if
TMPHASH
doesn't have thisPK
entry, trash this entry: it can't match at all. Otherwise, read theCOUNT
value, add1
or0
to it according to where it comes from, reinject it inTMPHASH
.Once all columns are done, you'll have to analyze
TMPHASH
.Analyzing
TMPHASH
First, if
TMPHASH
is empty, then you don't have any suitable answer. Return that to user. If it contains only one entry, same: return to user directly.For more than one element in
TMPHASH
:TMPHASH
container, searching for the maximumCOUNT
. Maintain in memory thePK
associated to the current maximum forCOUNT
.COUNT
at the same maximum value, you can either return them all, return the first one, or the last one.COUNT
if obviously always stricly lower thanM
- otherwise, you would have found the tuple inMAINHASH
. This value, compared toM
, can give a confidence mark to your result (=100*COUNT/M
% of confidence).PK
, in another hashmap calledCACHE
.Since it would be way too complicated to update properly
CACHE
when adding/modifying something inVECDATA
, simply purgeCACHE
when it occurs. It's only a cache, after all...This is quite complex to implement if the language doesn't help you, in particular by allowing to redefine operators and having all base containers available, but it should work.
Exact matches / cached matches are in
O(1)
. Fuzzy search is inO(n.M)
,n
being the number of matching rows (and0<=n<N
, of course).Without further researchs, I can't see anything better than that. It will consume an obscene amount of memory, but you said that it won't be an issue.
我建议使用带有一些数据修饰的 Trie 来执行此操作。对于路线,您想知道最低的路线 ID,以便我们可以匹配第一个可用的路线。对于航班,您想要跟踪还有多少航班可以匹配。
例如,这将允许您在比赛进行到一半时仅意识到从 city1 到 city2 的航班可能与从
city1、city2
或city1, * 出发的航线相匹配。
或*, city2
或*, *
,而无需为每条航线或航班重复该逻辑。以下是 Python 中的概念证明:
I would recommend doing this with Tries that have a little data decorated. For routes, you want to know the lowest route ID so we can match to the first available route. For flights you want to track how many flights there are left to match.
What this will allow you to do, for instance, is partway through the match ONLY ONCE realize that flights from city1 to city2 might be matching routes that start off
city1, city2
, orcity1, *
or*, city2
, or*, *
without having to repeat that logic for each route or flight.Here is a proof of concept in Python:
正如Wisblade在答案中注意到的那样,对于
n
行和m
列的数组,最好的复杂性是o(M)
。仅当您考虑m
是常数时,才能获得o(1)
。您可以在
o(2^m)
中轻松解决您的问题,该对于小m
是实用的,并且有效地o(1)
(如果您)考虑m
是一个常数。创建一个单个hashmap,其中包含(作为键)串联列值的字符串,可能由某些特殊字符隔开,例如斜线:
然后,当查询时,您可以尝试使用实际数据和通配符字符的不同组合。例如,假设您要查询
nyc/la/southwest
;然后,您尝试以下组合:如果第三步中的答案为null,则将继续如下:
仍然存在两个选项:
基本上,对于三个数据列,您有8个可能检查hashmap的可能性 - 还不错!而且您可能更早地找到答案。
As Wisblade notices in his answer, for an array of
N
rows andM
columns the best possible complexity isO(M)
. You can getO(1)
only if you considerM
to be a constant.You can easily solve your problem in
O(2^M)
which is practical for a smallM
and is effectivelyO(1)
if you considerM
to be a constant.Create a single hashmap which contains (as keys) strings of concatenated column values, possibly separated by some special character, e.g. a slash:
Then, when you query, you try different combinations of actual data and wildcard characters. E.g. let's assume you want to query
NYC/LA/Southwest
; then you try the following combinations:If the answer in the third step was null, you would continue as follows:
And there still remain two options:
Basically, for three data columns you have 8 possibilities to check in the hashmap -- not bad! and possibly you find an answer much earlier.