这是什么样的线性规划?
我最近开始学习运筹学(OR),我遇到了一个问题,我很难将其建模为传统的运筹学问题。我不确定这样的问题是否是线性问题,也不确定是否可以使用 LP 方法来解决。
问题描述 我需要找到购买一批产品的最低购买金额(T),遵守每个产品必须至少购买总购买金额的 ax% 的限制。
描述产品和限制的表格
数据 | 玉米(x1) | 大豆(x2) 小麦 | (x3) 大米 | (x4) |
---|---|---|---|---|
最小袋子重量(公斤) | 100 | 100 | 100 | 100 |
统一价格 袋子(美元) | 4,000 | 3,200 | 4,500 | 1,600 |
百分含量每种产品(占 T 的百分比) | 32% | 27% | 15% | 26% |
条件 每个产品的袋数(x1,x2,x3,x4)必须为整数,即不允许有小数袋。
目标是通过观察每种产品占总购买价值的百分比来确定购买所有产品的最低购买金额。
如果您找到解决方案,请描述将使用哪种技术/方法,并明确这是什么类型的 OR 问题?
谢谢。
I started study Operations Research (OR) recently and I faced a problem which I struggled to modeling it to traditional OR problems. I'm not sure if such problem is a linear one nor if it can be solved using LP methods.
Problem Description
I need to find the minimum purchase amount (T) to buy a batch of products, observing a restriction that each product must be purchased at least a x% of total purchase amount .
Table describing products and restrictions
Data | Corn(x1) | Soy(x2) | Wheat(x3) | Rice (x4) |
---|---|---|---|---|
Minimum Bag Weight (kg) | 100 | 100 | 100 | 100 |
Unitary Price Bag ($) | 4,000 | 3,200 | 4,500 | 1,600 |
Perc(% of T) of each Product | 32% | 27% | 15% | 26% |
Conditions
The amount of bags of each product (x1,x2,x3,x4) must be integer, i.e., no fractional bag is allowed.
The objective is to determine the minimum purchase amount to buy all of the products observing the percentage of total purchase value for each one.
If you find a solution for this, please describe which technique/method will be used and make clear what kind of OR problem is this ?
Thanks.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
这是一个线性编程问题,但是这个问题似乎有问题。目前,您无法真正购买,例如“至少27%的玉米”。每种产品的百分比为100%。因此,在这种情况下,它们都必须处于确切的百分比或增加的百分比,这将减少另一个是不可行的。严格百分比的数学模型将是:
It is a linear programming problem, but it looks like there is something wrong about the question. You can't really buy, let's say 'at least 27% corn', at the moment. Percentages of each product are given with a total of 100%. So in this case they all have to be in that exact percentage or increasing one will decrease the other which is infeasible. Mathematical model for strict percentages would be: