Pandas 计算字符串模式并附加到列多索引
我有此数据框架,并希望计算出发生模式的次数,然后将其附加到新的COLUM上。在这种情况下,我感兴趣的模式是“ mv =?” IE MV = 5455等。
d = [{'AX':['Rec(POS=4,,REF=FF,, MV=55), Rec(POS=2,, REF=GH,, MV=23)'], 'AVF1':[], 'HI':['Rec(POS=2,,REF=RTD,, MV=23), Rec(POS=234,, REF=FFRE,, MV=00)'],'AV1':[], 'version_1':[]},
{'AX':[], 'AVF1':['Rec(POS=43,,REF=FeF,, MV=5455), Rec(POS=2,, REF=GH,, MV=23), Rec(POS=231,, REF=JK, MV=TR)'], 'HI':[],'AV1':[], 'version_2':[]},
{'AX':['Rec(POS=2342,,REF=FhF,, MV=1)'], 'AVF1':['Rec(POS=11,,REF=FF11,, MV=551)'], 'HI':[],'AV1':[], 'version_3':[]}]
frame = pd.DataFrame(d)
f = frame.T
lst = []
f['temp'] = f.index
for i in f.iloc[-3:, -1]:
lst.append(i)
f = f.drop(columns={'temp'})
f.columns = [lst, f.columns]
f
ALTS = pd.DataFrame(index=f.index, columns=pd.MultiIndex.from_product([f.columns.levels[0], ['ALT']]))
f = pd.concat([f,ALTS], axis=1).sort_index(level=0, axis=1)
f = f.drop(f.index[[-1,-2,-3]])
f
所需的输出 您可以看到第0列中有两项MV计数,第2列中的MV计数等等。
version_1 version_2 version_3
ALT ALT ALT
AX 2 NaN 1
AVF1 NaN 3 1
HI 2 NaN NaN
AV1 NaN NaN NaN
我正在处理的较大数据框架有更多列,我的互联网非常糟糕,因此我无法上传整个数据框架。
我正在考虑使用以下类似的内容,但是我有多索引列:
f['ALT'] = f.0.str.extract('MV=??').count()
I have this dataframe and am looking to count the number of times a pattern occurs and then append to a new colum. In this case the pattern I'm interested in is "MV=??" i.e. MV=5455 etc.
d = [{'AX':['Rec(POS=4,,REF=FF,, MV=55), Rec(POS=2,, REF=GH,, MV=23)'], 'AVF1':[], 'HI':['Rec(POS=2,,REF=RTD,, MV=23), Rec(POS=234,, REF=FFRE,, MV=00)'],'AV1':[], 'version_1':[]},
{'AX':[], 'AVF1':['Rec(POS=43,,REF=FeF,, MV=5455), Rec(POS=2,, REF=GH,, MV=23), Rec(POS=231,, REF=JK, MV=TR)'], 'HI':[],'AV1':[], 'version_2':[]},
{'AX':['Rec(POS=2342,,REF=FhF,, MV=1)'], 'AVF1':['Rec(POS=11,,REF=FF11,, MV=551)'], 'HI':[],'AV1':[], 'version_3':[]}]
frame = pd.DataFrame(d)
f = frame.T
lst = []
f['temp'] = f.index
for i in f.iloc[-3:, -1]:
lst.append(i)
f = f.drop(columns={'temp'})
f.columns = [lst, f.columns]
f
ALTS = pd.DataFrame(index=f.index, columns=pd.MultiIndex.from_product([f.columns.levels[0], ['ALT']]))
f = pd.concat([f,ALTS], axis=1).sort_index(level=0, axis=1)
f = f.drop(f.index[[-1,-2,-3]])
f
Desired Output
You can see there are two counts of MV in column 0, one count of MV in column 2 and so on.
version_1 version_2 version_3
ALT ALT ALT
AX 2 NaN 1
AVF1 NaN 3 1
HI 2 NaN NaN
AV1 NaN NaN NaN
The larger data frame I am working on has more columns, my internet is pretty bad so I can't upload the entire data frame.
I was thinking of using something like below, but I have multi index columns:
f['ALT'] = f.0.str.extract('MV=??').count()
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
尝试使用
应用
和str.Count
:Try with
apply
andstr.count
: